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Bounding Contribution Optimally for Federated Frequency
Estimation under User-level Distributed Differential Privacy

Anonymous Author(s)

ABSTRACT
We study how to perform federated frequency estimation under

user-level distributed differential privacy, where our goal is to pro-

tect the privacy of all entries from any single user under secure

aggregation protocols. While many works address the fundamental

analytics of private frequency estimation under the central and

trusted aggregator assumption, this problem has not been specif-

ically addressed under the federated and user-level distributedly

private setting. To achieve this, we first introduce a thresholding

frequency estimator satisfying the federated and secure aggrega-

tion constraints, and show that there is an optimal quantile yielding

almost minimal measurement error. Then, we design methods fully

compatible with the above-mentioned constraints, to estimate the

quantile privately. To this end, we propose end-to-end federated pro-

tocols integrating these approaches and assess their performance

via extensive experiments. Our evaluations verify our theoretical

findings, and demonstrate the effectiveness of the protocols over

existing solutions.

ACM Reference Format:
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In Proceedings of Make sure to enter the correct conference title from your
rights confirmation emai (Conference acronym ’XX). ACM, New York, NY,

USA, 19 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Federated/distributed analytics (FA) and learning (FL) have emerged

as a new paradigm which enables multiple users or parties to col-

laborate and perform analytics/learning without sharing their data

directly, offering promises of protecting user privacy [29, 43]. Specif-

ically, frequency or histogram estimation, is a fundamental analyti-

cal task, where each user holds one or more items/data from domain

𝑑 , and the server wishes to estimate the global frequency of these

items while guaranteeing user privacy. However, inferring private

information from users is shown to be possible even under such

a distributed setting, indicating that this technology alone does

not protect user privacy in a strict sense [34, 54, 65]. Consequently,

recent studies combine FA with privacy-enhancing technologies

such as cryptographical protocols and differential privacy (DP) to

preserve user privacy rigorously. In particular, secure aggregation
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Figure 1: Overview of our two-phase federated frequency es-
timation protocol. Users first perform Discrete Haar wavelet
Transform under distributed differential privacy (DHT) to
obtain a differentially private quantile (DP quantile) from
the server (Section 4). Using the DP quantile, the users per-
formOptimal clipped Poisson Binomialmechanism (OcPBM)
on their data, which are then aggregated to obtain the desired
(estimated) frequencies (Section 3.3). Our proposal satisfies
user-level DP, secure aggregation conditions and achieves
almost minimal measurement error.

(SecAgg) [12] has become a popular secure multi-party computa-

tion solution enhancing the security and privacy of FA. SecAgg

requires users to add carefully designed noises to their data such

that the server can only obtain the aggregated data (with noises

canceled out), but is unable to read any individual data.

This paper focuses on federated frequency estimation, the prob-
lem of performing frequency estimation under the distributed and

SecAgg constraints, as well as user-level distributed DP, referring to

techniques provably limiting individual information the server is

able to deduce from the aggregated data.

Contributions.More precisely, in this paper, we tackle an unex-

plored question of how to define protocols to perform cross-device
federated frequency estimation (FFE) that strictly satisfy user-
level distributed DP (DDP) and secure aggregation (SecAgg) condi-

tions, resulting in provably private and cryptographically secure FA
with low error. The overview of our main proposal is illustrated in

Figure 1. Technically, we make the following contributions:

• We introduce clipped Poisson Binomial mechanism, cPBM, a

thresholding frequency estimator that satisfies user-level DDP

and SecAgg constraints. By our careful construction, we show

that one can provably optimize the bias-variance error trade-offs

by choosing the threshold (to bound the user contribution) to

be a certain private measurement’s quantile (Section 3), leading

to an optimal estimator, OcPBM, which has almost minimal

frequency measurement error.

• In order to achieve almost minimal error, we design a feder-

ated wavelet-decomposition technique to perform the private

quantile measurement (DHT). It requires only a little portion of

the privacy budget, and is fully compatible with federated and

1
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SecAgg constraints. These lead us to introducing an end-to-end,

secure and user-private two-phase protocol, TFFE, in Section 4.

• Furthermore, we consider the extension where user data is pro-

cessed in multiple rounds, motivated by recent federated appli-

cations that analyze large populations and must process user

reports in batches. We propose a multi-round protocol,MFFE,
which utilizes online quantile measurement to efficiently collect

frequencies over multiple rounds for FFE.

• In Section 5, we perform extensive experiments to validate our

proposals: (a) we verify empirically that ourmethod indeed yields

almost minimal measurement error, (b) our quantile estimation

proposals are superior than existing baselines, (c) our end-to-end

FFE protocols perform better than existing solutions.

In the following, we describe related work, followed by the problem

setup and preliminaries in Section 2. We conclude in Section 6.

Notations. We use boldface letters to denote vectors, subscripts

to denote which user it belongs to, and normal letters with square

brackets to denote the coordinate. That is, if x is a vector, x𝑖 is a
vector held by user 𝑖 , and 𝑥𝑖 [ 𝑗] is the 𝑗-th coordinate. See also Tab.

4 in Appendix, where we give a summary of notations.

1.1 Related work
Federated Frequency Estimation. Frequency or histogram es-

timation is a fundamental analytical task [19, 33, 62] with many

federated applications: frequencies are utilized to calibrate the clas-

sification scores of trained FL models [23], and as a building block

of more advanced tasks such as learning [17] and sparse analytics

[6].

Differential Privacy and Secure Aggregation. Early works of

DP considered the central-DP model, which requires users to trust

the server to process raw user data and publish the noisy statistics.

However, this is impractical in many industrial settings as well as

distibuted settings mainly due to increasingly stringent data privacy

protection laws and regulations. In contrary, the local model of DP

(LDP) asks users to perturb their reports by themselves, requiring

least trust assumptions and is appropriate under the distributed

setting, but introduces large errors in the published statistics [45].

A recent line of research in DP leverages cryptographic primi-

tives (specifically SecAgg) to establish more practical trust assump-

tions in distributed settings while maintaining the utility of pub-

lished statistics [10, 12, 52, 53]. It achieves the best of both worlds

by allowing users to add lower amount of local noises without

relying on a central trustworthy entity. Such primitives rule out

commonly-used (continuous-value) DP mechanism such as Gauss-

ian mechanism, and spur the study of compatible (discrete-value)

DPmechanisms, also known as distributed DP, or DDPmechanisms

[1, 2, 9, 20, 42].

User-level privacy. We are interested in protecting the privacy

of user contributing possibly more than one sample of data per

user, i.e., user-level privacy, in contrast to standard DP protecting

privacy at the sample/item level. This consideration is inspired by

cross-device applications which are rich in data per user or device

[4, 35, 47, 49, 50, 56].

To summarize, while privacy-enhancing techniques mentioned

above have been studied in depth separately before, it is little known

how to integrate them in a full-fledged system to perform feder-

ated analytical tasks in a principled way (see also App. A for other

related work). We resolve these questions affirmatively by present-

ing comprehensive studies of sytems achieving private, secure and

accurate FFE.

2 PROBLEM SETUP AND PRELIMINARIES
Problem setup. Consider each of 𝑛 users holding a finite number

of items from a discrete domain [𝑑], where 𝑑 ∈ N. We write this

succinctly using x𝑖 ∈ R𝑑 , where x𝑖 = (𝑥𝑖 [1], ..., 𝑥𝑖 [𝑑]), and 𝑥𝑖 [ 𝑗] is
the number of item 𝑗 held by user 𝑖 .

We consider federated frequency estimation under (user-level)

DDP and SecAgg. That is, (a) the server does not collect the raw

personal data from users directly (federated setting). (b) The inter-

mediate and resulting output of our protocols, i.e., the estimated

frequencies, must satisfy user-level DP. (c) The server is limited to

receiving and performing computation using only the aggregation

of per-user vectors.

Our goal is to estimate the true population-level frequency x̄ ≡
1

𝑛

∑𝑛
𝑖=1

x𝑖 under these constraints. Let ˆ̄x be the corresponding es-

timated frequency (let 𝑥𝑖 [ 𝑗] denote the collected value of 𝑥𝑖 [ 𝑗]).
We quantify the error of estimation via the expected 𝑙2 distance

between these two quantities:

E∥x̄ − ˆ̄x∥2 =
1

𝑛
E


√√√√ 𝑑∑︁
𝑗=1

(
𝑛∑︁
𝑖=1

𝑥𝑖 [ 𝑗] − 𝑥𝑖 [ 𝑗]
)

2
 (1)

where the expectation is taken over the randomization due to our

DP algorithm. Our protocol aims to minimize this error. In the

following, we give a brief review of DP, SecAgg, and user-level

distributed DP.

Differential privacy. First, let D = (x𝑖 )𝑛𝑖=1
be the dataset of users

considered above. We say that a dataset D′ is a adjacent dataset of
D when they differ in at most one individual data.

Definition 1 (Differential Privacy [25, 26]). Given 𝜖 ≥ 0 and

𝛿 ∈ [0, 1], a randomization mechanism,M : D𝑛 → S with domain

D𝑛 and range S satisfies (𝜖 , 𝛿)-differential privacy (DP) if for any

two adjacent datasets D,D′ ∈ D𝑛 with 𝑛 users and for any subset

of outputs 𝑆 ⊆ S, the following holds:
Pr[M(D) ∈ 𝑆] ≤ 𝑒𝜖 · Pr[M(D′) ∈ 𝑆] + 𝛿. (2)

We emphasize that under this definition, user-level DP is being

considered, instead of item-level DP, where the adjacent datasets

instead differ in a single instance, e.g., 𝑥𝑖 [ 𝑗] in our case. We next

introduce Rényi differential privacy, the main notion used here.

Definition 2 (Rényi Differential Privacy (RDP) [55]). A random-

ization mechanismM : D𝑛 → S is 𝜖-Rényi differential privacy

of order 𝜆 ∈ (1,∞) (or (𝜆, 𝜖)-RDP), if for any adjacent databases

D, D′ ∈ D𝑛 , the Rényi divergence of order 𝜆 betweenM(D) and
M(D′) is upper-bounded by 𝜖: 𝐷𝜆 (M(D) | |M(D′)) ≤ 𝜖 , where

𝐷𝜆 (𝑃 | |𝑄) = 1

𝜆−1
log

[
E𝑄

(
𝑃
𝑄

)𝜆]
.

Two mechanisms satisfying (𝜆, 𝜖1),(𝜆, 𝜖2)-RDP respectively, un-

der composition, satisfy (𝜆, 𝜖1 +𝜖2)-RDP, allowing for clean privacy

composition [13, 28, 55]. The RDP notion can be converted to the

conventional approximate DP notion; see App. C.1.

SecAgg/SecSum. We are mainly concerned with the secure aggre-

gation (SecAgg) framework, composed of three components: (1)

2
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Algorithm 1Main user protocol for FFE

1: Inputs: Data x. Tight frame𝑈 . Parameters 𝜃 , 𝐶 ,𝑚.

2: Output: Data encoded on a finite group Z𝐷
𝑀

3: Kashin’s representation: Calculate the Kashin’s representa-
tion, y, of x

4: cPBM: Apply Alg. 3 with parameters 𝜃 , 𝐶 ,𝑚 on y to output Z
5: Return: (𝑍 [𝑘])𝐷

𝑘=1

a client-side local encoder, A, (2) a secure protocol, P and (3) a

untrusted analyzer, or central server, S. At each communication

round, the protocol proceeds as follows: Each user first encodes

her sensitive report x𝑖 using A: 𝑍𝑖 = A(x𝑖 ). Then, the reports are
processed by P, of which the output is relayed to S. P ensures that

the output seen by the S (on which no trust assumption is put) sat-

isfies certain properties. We mainly focus on the secure summation

(SecSum) protocols , where each individual report x is encrypted

to Z ∈ Z𝐷
𝑀
, 𝐷,𝑀 ∈ N a finite additive group, but only the modular

summation of reports,

∑
𝑖 Z𝑖 mod 𝑀 , is exposed to S. Finally, S

decodes the received reports to obtain an estimate of

∑
𝑖 x𝑖 . Given

that the implementation of SecSum is well-studied [10, 12], we treat

P as a black box guaranteed to compute the modular sum faithfully

without security or privacy leakage concerns.
1

User-level Distributed Differential Privacy. P alone does not

guarantee DP because aggregated quantities could still leak sensi-

tive information. On the other hand, adding noises at the side of S
requires one to fully trust S, not favorable in practice. Distributed
differential privacy (DDP) is a privacy model that aims to achieve

near-central-DP guarantees without a trustworthy server. This is

done by adding client-side perturbations (which alone are too small

to provide meaningful DP guarantees) through A to the reports,

and using SecAgg to achieve meaningful DP guarantees from the

view of S. Our interest is in user-level DDP, where all items held by

any single user is encoded, bounded, and perturbed appropriately

by A, and are simultaneously guaranteed with DDP. The most

common way of bounding user contribution is via 𝑙2-norm clipping:

x← x ·min( 𝐶
∥x∥2 , 1) where𝐶 ∈ R

+
. By clipping to a certain𝐶 , each

user can only contribute x with 𝑙2-norm at most 𝐶 , irrespective of

the number of items she holds.

3 OUR METHOD
We describe our method of performing FFE through collaboration

between users and server. At the user side, our proposed protocol

(Alg. 1) consists of the following steps:

(1) Data projection: Each user project x𝑖 to its Kashin’s repre-

sentation, which bounds the 𝑙∞ of x𝑖 while maintaining its 𝑙2
geometry.

(2) Bounding contribution: User applies the clipped Poisson

binomial mechanism with threshold𝐶 to the Kashin’s represen-

tation, and sends it out to be processed by the SecSum protocol.

The server decodes the SecSum of user reports following Alg. 2.

In the following, we first describe these steps in detail, and subse-

quently study how to bound user contribution optimally.

1
Hereafter, we use the terms SecSum/SecAgg interchangeably.

Algorithm 2 Main server protocol for FFE

1: Inputs: SecSum of user data (∑𝑛𝑖=1
𝑍𝑖 [𝑘])𝐷𝑘=1

. Tight frame𝑈 .

Parameters 𝜃 , 𝐶 ,𝑚.

2: Output: Decoded mean of user data

3: Rescale: ˆ̄y← 𝐶
𝑚𝑛𝜃
(∑𝑛𝑖=1

Z𝑖 − 𝑚𝑛
2
1)

4: Decode: ˆ̄x← 𝑈 ˆ̄y
5: Return: ˆ̄x

Algorithm 3 Clipped Poisson binomial mechanism (cPBM)

1: Inputs: Representation y. Parameters 𝜃 , 𝐶 ,𝑚

2: Output: Data encoded on a finite group Z𝐷
𝑀

3: Clip: y← y ·min( 𝐶
∥y∥2 , 1)

4: for 𝑘 ∈ [𝐷] do
5: 𝑝 [𝑘] = 𝜃

𝐶
𝑦 [𝑘] + 1

2

6: Sample 𝑍 [𝑘] ∼ Binom(𝑚, 𝑝 [𝑘])
7: Return: (𝑍 [𝑘])𝐷

𝑘=1

3.1 Data projection
We utilize the Kashin’s representation for data projection:

Definition 3 (Kashin’s representation [44]). For a set of vectors

(u𝑘 )𝐷𝑘=1
, the Kashin’s representation of x ∈ R𝑑 at level 𝐾 is the

set of coefficients 𝑦 [𝑘] satisfying the following: x =
∑𝐷
𝑘=1

𝑦 [𝑘]u𝑘 ,
max𝑘 |𝑦 [𝑘] | ≤ 𝐾√

𝐷
∥x∥2 .

One may think of it as a generalization of orthogonal bases

where one uses a redundant system of vectors (u𝑘 )𝐷𝑘=1
, u𝑘 ∈ R𝑑 , to

represent x ∈ R𝑑 , where𝐷 > 𝑑 . This is called a tight framewhen for

any x, the Parseval’s identity is satisfied: ∥x∥2 =
∑𝐷
𝑘=1
|⟨x, u𝑘 ⟩|2. We

utilize this representation to spread out the information contained

in x across several coefficients of u𝑘 ’s, to bound their 𝑙∞-norm (such

that we can apply DP noises independently to each coordinate with

well-defined sensitivity). It also satisfies the following.

Lemma 1 (Uncertainty principle [51]). There exists a tight frame

𝑈 = [u1, ..., u𝐷 ] such that 𝐷 = Θ(𝑑) and 𝐾 = 𝑂 (1).

Thismeans that one can represent any xwith y = (𝑦 [1], ..., 𝑦 [𝐷])
that is in the range [− 𝐾√

𝐷
∥x∥2, 𝐾√

𝐷
∥x∥2]. Conversely, one can de-

code 𝑦 to recover x via x = 𝑈y. Details of computing these values

are available in App. B.

3.2 Clipped Poisson Binomial Mechanism
Now each of the coordinates of y has bounded 𝑙∞. We next en-

code each coordinate of y to values on a finite group that is DP

and compatible with SecSum. We propose a variant of the Poisson

binomial mechanism [20] which we call clipped Poisson binomial

mechansim (cPBM), as shown in Alg. 3.

In particular, for each coordinate of y, we (1) clip its 𝑙2 norm to

𝐶 , (2) encode 𝑦 [𝑘] to 𝑝 [𝑘] = 𝜃
𝐶

clip(𝑦 [𝑘]) + 1

2
, (3) sample from the

binomial distribution, 𝑍 [𝑘] ∼ Binom(𝑚, 𝑝 [𝑘]) and send 𝑍 [𝑘] to
the server. Here, 𝜃 ∈ [0, 1/4] and𝑚 ∈ N are parameters that govern

the privacy-utility trade-offs.𝑚 is also the number of bits sent out

by each user. The clipping operation bounds user contribution, and

we use clipping/bounding user contribution interchangeably from

3
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now onwards. Note that for SecSum operating on a finite group

of size 𝑀 , when summing 𝑛 quantities of size 𝑚 each, we avoid

integer overflows by choosing parameters such that𝑀 = 𝑛𝑚. Thus,

each user sends log
2
(𝑚) + log

2
(𝑛) bits per dimension to the server.

Utility of cPBM. Using properties of binomial distribution, it is

easy to show that the server receiving

∑
𝑖 𝑍 [𝑘] can make an unbi-

ased estimate of the mean and variance of 𝑦 [𝑘] via

𝑦 [𝑘] = 𝐶

𝑚𝑛𝜃
(
∑︁
𝑖

𝑍 [𝑘] − 𝑚𝑛
2

), Var(𝑦 [𝑘]) ≤ 𝐶2

4𝑛𝑚𝜃2
. (3)

Privacy of cPBM. The SecSum of the outputs,

∑
𝑖 𝑍 [𝑘], of Alg. 3

satisfies RDP, which is given below (proof in App. C.2).

Lemma 2 (cPBM RDP bounds). The SecSum of the cPBM outputs

of 𝑛 users is differentially private, and its RDP of order 𝜆 bounded

by 𝜖 (𝜆) ≤ 𝑚𝑑
𝜆−1

log max (Π1,Π2), where Π1 =
∑𝑛′+1
𝑚=0

Bin(𝑚,𝑛′ +
1, 1

2
+ 𝜃 )𝑒𝜆𝜉𝑚 , Π2 =

∑𝑛′+1
𝑚=0

Bin(𝑚,𝑛′, 1

2
− 𝜃 ) ( 1

2
+ 𝜃 ) ( 𝑚

𝑛′−𝑚+1
1+2𝜃
1−2𝜃

+
1−2𝜃
1+2𝜃 )𝑒

−𝜆𝜇𝑚
; 𝜉𝑚 = log( 1+2𝜃

1−2𝜃
𝑛′+1−𝑚
𝑛′+1 +

1−2𝜃
1+2𝜃

𝑚
𝑛′+1 ), 𝜇𝑚 = log( 1+2𝜃

1−2𝜃
𝑚
𝑛′+1+

1−2𝜃
1+2𝜃

𝑛′+1−𝑚
𝑛′+1 ), and 𝑛

′ = ⌈𝑛−1

2
⌉, Bin(𝑚,𝑛, 𝑝) =

(𝑛
𝑚

)
𝑝𝑚 (1 − 𝑝)𝑛−𝑚 .

Asymptotically, 𝜖 (𝜆) = Θ(𝑚𝑑𝜃2𝜆/𝑛).

Compared to [20], where only asymptotic bounds are given, we

re-derive the RDP of cPBM to give an explicit and computable

bound with all the exact constants in the above Lemma.

3.3 Bounding contribution optimally (OcPBM)
Building on the tools developed in previous subsections, we intro-

duce OcPBM, our method to bound user contribution optimally.

We first characterize the expected 𝑙2-error (Eq. 1) of cPBM.

Theorem 1 (cPBM’s expected 𝑙2-error). Let ˆ̄x be the decoded Sec-

Sum of user reports following the protocols of Alg. 1 and 2. The

expected 𝑙2-error of cPBM is at most

E∥x̄ − ˆ̄x∥2 ≤
√
𝑑 · E(𝐶;D) (4)

where E(𝐶;D) B 1

𝑛

∑𝑛
𝑖=1

max(0, ∥y𝑖 ∥2 − 𝐶) + 𝐶
√︃

𝐷
4𝑚𝑛𝜃 2

with y𝑖
being x𝑖 ’s Kashin’s representation.

The proof can be found in App. C. In essence, we first show

that the expected 𝑙2-error of x equals to that of Kashin’s represen-

tation up to a multiplicative constant of

√
𝑑 . Then, we perform

bias-variance decomposition on the expected 𝑙2-error to arrive at

the required statement.

Theorem 1 indicates that choosing a 𝐶 too small induces a large

bias, while a 𝐶 too large causes a large variance. Choosing an

optimal 𝐶 can hence lead to optimal bias-variance trade-off which

minimizes the expected 𝑙2-error. It can be seen from the definition

of E(𝐶 ;𝐷) that it is a function convex in 𝐶 . Thus, one can find the

optimal 𝐶 by taking the derivative of E(𝐶;𝐷) to be zero:

0 = − 1

𝑛

∑︁
𝑖:∥y𝑖 ∥2>𝐶

1 +
√︂

𝐷

4𝑚𝑛𝜃2
(5)

Thus, the optimal 𝐶 is the 1 −
√︃

𝐷
4𝑚𝑛𝜃 2

-th quantile of ∥y𝑖 ∥2.
Since the optimal 𝐶 is data (∥𝑦∥2) dependent, it has to be esti-

mated privately to avoid privacy leakage. We resolve this issue in

the next Section.

Remark on clipping threshold and privacy budget. One may

wonder why the clipping threshold can be chosen according to

Eq. 5 without affecting the privacy budget 𝜖 . This is because in

our formulation, 𝜖 does not depend explicitly on the threshold

𝐶 (Lemma 2), in the same way that the privacy budget of the

Gaussian mechanism does not depend on the clipping threshold:

(𝜖, 𝛿) = (
√︁

2 log(1.25/𝛿)/𝜎, 𝛿) when the noise scale is 𝐶𝜎 . This

does not contradict the common fact that larger𝐶 introduces larger

"noises"; from Eq. 3, we see that the variance of the private output

is proportional to 𝐶2
; larger 𝐶 indeed leads to larger uncertainty in

the estimation of the output.

Remark on novelty. Our insight leading to optimal bias-variance

trade-off lies in our careful algorithmic design: by bounding user
contribution in the representation space and applying a suitable DP
mechanism, we can solve a convex function for an optimal threshold
with theoretical guarantees. Naively, one could bound user contri-

bution by clipping x directly and using well-known discrete DP

mechanisms (e.g., discrete Gaussian [42]) to achieve user-level DP

under SecSum constraints. This however does not work well as

clipped x encoded and added with discrete (Gaussian) noises leads

to a complicated non-convex expression of the 𝑙2-error that is hard

to optimize (e.g., Eq. 63 of [42]). Experiments to be presented in the

subsequent sections also verify our approach’s effectiveness.

4 FEDERATED QUANTILE ESTIMATION
Quantile estimation is well studied under the central-DP model

[36, 60, 61]. These algorithms utilize sub-routines such as sorting

that require the full view of data not possible under the distributed

settings. Recently, [57] studied this problem under the federated

setting by essentially quantizing per-user values to per-user (flat or

hierarchical) histogram, performing randomization, and aggregat-

ing them using SecSum.

Here, we propose an alternative quantile estimation solution

based on wavelet decomposition techniques. Our contribution here

is showing that it performs even better, and how this technique can

be adapted to be compatible with DDP constraints.

4.1 Setting and Baselines
Recall that our aim is to obtain the quantile of of ∥y𝑖 ∥2, which is a

private statistics to be calculated from each user 𝑖 holding ∥y𝑖 ∥2.
Flat histograms. Consider a one-dimensional (non-empty) his-

togram of range 𝐵 with 2
𝑏
bins.

2
In this approach, each user dis-

cretizes ∥y∥2 into her local histogram: ∥y∥2 ∈ {0, 1}2
𝑏
. Then, the

user applies DP noises (e.g., cPBM introduced earlier) to each bin of

the histogram, and finally sends the histogram to the SecSum pro-

tocol [57]. The quantile is estimated from the aggregated histogram

by finding the bin that minimizes the difference between the esti-

mated and target quantile. Denote the bin size by Δ. This approach
yields error depending linearly on the range of the histogram, 𝐵:

Proposition 1. The variance of the estimated quantile of the flat-

histogram approach is at most Var
flat
(𝛾) ≤ 𝐵

4Δ𝑚𝑛2𝜃 2
when the

underlying DP mechanism is cPBM (proof in App. C.4).

2
The number of bins can be any integer; making it equal to the power of 2 is simply

for later convenience.

4
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Figure 2: An example of using a binary tree to perform quan-
tile/range estimation. The leaves (circles) represent the his-
togram bin counts. The upper part of the internal nodes
(rectangles) represents the hierarchial histograms (HH) ap-
proach, which maintains the sum of all leaves below it. The
lower part represents the Discrete Haar wavelet transform
(DHT) approach, which maintains the Haar coefficient calcu-
lated using Eq. 6. To perform federated quantile estimation,
each user adds DP noises to her own binary tree, and sends
it to the secure aggregation protocols. See text for details.

Hierarchical histograms (HH). [57] also considered an alterna-

tive approach where each user maintains, on top of the single bins

as in the flat histogram approach, aggregated counts of the bins in

the form of a binary tree, consisting of nodes where each of them

is the sum of all leaves below that node. See Fig. 2 for an example.

As before, the user applies DP noises to all the nodes and leaves

(bins) and send the histogram to the SecSum protocol. The main

strength of HH comes from using counts from upper nodes to

estimate the quantile, resulting in less noisy estimation. In fact,

asymptotically, the error has logarithmic dependency with respect

to 𝐵 (proof in App. C.5):

Proposition 2. The variance of the estimated quantile of the HH

approach is at most VarHH (𝛾) ≤
log

2
(𝐵/Δ)

4𝑚𝑛2𝜃 2
when the underlying

DP mechanism is cPBM.

4.2 Discrete Haar Wavelet Transform (DHT)
Although the HH approach has lower asymptotic error as indicated

by Proposition 2, [57] finds that in practice, the flat histogram ap-

proach performs better. One reason is that the HH approach does

not fully utilize the binary-tree structure, leading to redundancy:

we output the value of each node, which should sum to the value

of the parent node (output independently by the HH algorithm).

While some studies aim to reduce this redundancy to improve esti-

mation via postprocessing [38, 39, 46], we explore an alternative

representation of the binary-tree structure where no such redun-

dancy occurs: the Discrete Haar Wavelet Transform. Here, pairwise

averaging and differencing of child nodes are performed, instead of

performing summation as in the HH approach. The resulting node

values/coefficients are independent to each other, and therefore

have no redundancy [63].

More technically, as before, consider a binary tree over B with

2
𝑏
leaves corresponding to each of the bins. Suppose 𝑙 is the level

of the node 𝑣 in the binary tree, starting at zero from the leaves.

The Haar wavelet coefficient, or simply Haar coefficient 𝐻𝑙 [𝑣] for

Algorithm 4 User-side DHT protocol

1: Inputs: Data x𝑖 . Parameters 𝐵, 𝑏, 𝜃 ′,𝑚′

2: Output: Haar coefficients

3: Step 1: Calculate Kashin’s representation’s norm, ∥y𝑖 ∥2
4: Step 2: Discretize ∥y𝑖 ∥2 to histogram (range 𝐵, bin size 2

𝑏
)

5: Step 3: Apply DHT (Eq. 6) to histogram to yield 𝐻𝑙 ’s

6: Step 4: Apply cPBM to 𝐻𝑙 ’s with parameters 𝜃 ′,𝑚′ to yield �̂�𝑙
7: Return: �̂�𝑙

Algorithm 5 Server-side DHT protocol

1: Inputs: SecSum of user data �̂�𝑙 , Target quantile 𝛾
∗
, bin size Δ

2: Output: Estimated quantile of ∥y𝑖 ∥2
3: Step 1: Decode SecSum of �̂�𝑙 with Eq. 3 to yield �̂�𝑙
4: Step 2: Decode �̂�𝑙 with Eq. 7 to yield 𝑐

5: Step 3: Obtain 𝑣 = argmin𝑣∈leaves
| 𝑐 [1:𝑣 ]

𝑛 − 𝛾∗ |
6: Return: Δ · 𝑣 as the estimated quantile of ∥y𝑖 ∥2

node 𝑣 at level 𝑙 is defined as

𝐻𝑙 [𝑣] = (𝑎𝐿 − 𝑎𝑅)/2𝑙 , (6)

with 𝑎𝐿 (𝑎𝑅 ) being the total counts of the leaves in the left (right)

subtree of 𝑣 . Defining the base coefficient 𝐻0 as the sum of the

counts of all leaves, we can decode the leaf count (or the count of

bin 𝑣, 𝑣 ∈ [2𝑏 ] of the histogram), 𝑐 [𝑣], from the Haar coefficients

as 𝑐 [𝑣] = 𝐻0 +
∑
𝑙 𝐻𝑙 [𝑣] · 𝑔𝑙 [𝑣], where 𝑔𝑙 [𝑣] is +1 (−1) if 𝑣 is in the

left (right) subtree of the 𝑙-level ancestor node. See Fig. 2.

Federated quantile estimation via DHT. We adapt DHT to fed-

erated quantile estimation with the following user protocol. Each

user first discretizes her ∥y𝑖 ∥2 into a histogram of range 𝐵 with 2
𝑏

(𝑏 ∈ N) bins. We rescale the Haar coefficient to be 𝐻𝑙 [𝑣] = 𝑎𝐿 − 𝑎𝑅
such that each user only has a non-zero leaf on her binary tree,

and a non-zero Haar coefficient of bounded value, ±1 at each level.

The user then applies cPBM to all nodes of the binary tree with

𝐶 = 1, and subsequently send them to the SecSum protocols; see

Alg. 4. The server finally obtains a summation of the binary trees,

obtaining the estimated coefficients, �̂�𝑙 ’s, as an unbiased estimator

of 𝐻𝑙 ’s. The leaf count can be decoded as follows:

𝑐 [𝑣] = 𝐻0 +
∑︁
𝑙

�̂�𝑙 [𝑣]
2
𝑙
· 𝑔𝑙 [𝑣], (7)

and be used to estimate a quantile via Eq. 7 by summing up 𝑐 [𝑣]’s
from the first leaf node to a given range and dividing it by the

number of user (Alg. 5).

Utility. Observe that for any internal node of which all or none of
its child leaves is a subset of the given range, its contribution to Eq.

7 is exactly zero. Non-zero contributing terms are ranges with leaf

nodes that "cut" through the subtree of an internal node. Roughly

speaking, this implies that the number of noisy Haar coefficients

that contributes to quantile estimation is logarithmic with respect

to the range.

Let us quantify the variance of the estimated quantile more pre-

cisely. Let 𝑐 [1 : 𝑣] to be the estimated sum of counts up to 𝑣-th leaf

node. Also let 𝑠𝐿 [𝑤] (𝑠𝑅 [𝑤]) be the number of leaf nodes within

the range in the left (right) subtrees of node𝑤 . Then, we can write

5
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Algorithm 6 Two-phase FFE protocol (TFFE)

1: Inputs: User data x𝑖 . Parameters 𝐵, 𝑏,𝑈 , 𝜃 , 𝜃 ′,𝑚,𝑚′

2: Output: Estimated frequencies

3: Step 1: User applies DHT (Alg. 4) and sends the Haar coeffi-

cients to the SeSum protocol

4: Step 2: Server obtains the SecSum of the Haar coefficients, and

returns the estimated DP quantiles, 𝐶 (Alg. 5)

5: Step 3: User runs OcPBM with 𝐶 and sends it to the SecSum

protocol (Alg. 1)

6: Step 4: Server obtains ˆ̄x with Alg. 2

7: Return: ˆ̄x

𝑐 [1 : 𝑣] = 𝑣𝐻0 +
∑
𝑤 (𝑠𝐿 [𝑤] − 𝑠𝑅 [𝑤])

�̂�𝑙 [𝑤 ]
2
𝑙 . The threshold that cor-

responds to the optimal quantile 𝛾∗ is 𝑣 that minimizes | 𝑐 [1:𝑣 ]
𝑛 −𝛾∗ |.

With this observation, we have the following Proposition quantify-

ing the utility of the DHT protocol (proof in App. C.6).

Proposition 3 (Utility of DHT). The variance for federated quan-

tile measurement using the DHT protocol is at most Var(𝛾) ≤
log

2
(𝐵/Δ)

16𝑚′𝑛2𝜃 ′2
, with Δ C 𝐵/2𝑏 the bin size,𝑚′, 𝜃 ′ parameters of cPBM.

Other advantages. The design of our protocol has several key

advantages, in addition to the logarithmic dependency on the range

𝐵 and non-redundant properties: (a) The Haar coefficients of the en-

tire population can be conveniently reconstructed from individual

Haar coefficients by summation, satisfying SecSum requirements.

(b) The entry of the binary tree is symmetric around zero, i.e. it

is bounded to be ±1 (such that there is no positive bias, unlike

common histogram approaches that have entry of either 0 or 1);

it is convenient to apply DP mechanism like cPBM which is also

symmetric around zero without any modification.

4.3 Federated Frequency Estimation Protocols
Equipped with the quantile estimation techniques, we propose an

end-to-end protocol, extending the single-round data aggregation

setting to a two-round scheme that first have all users estimate the

quantile of ∥y∥2 privately, before performing FFE by aggregating

all users’ frequencies with the estimated quantile. Alg. 6 outlines

our two-phase Federated Frequency Estimation protocol, TFFE: we
first let each user quantize her ∥y∥2 into a per-user histogram, and

process the histogram with DHT before aggregating it via SecSum

to estimate the quantile of ∥y∥2. Then, we perform the estimation

using Alg. 1 to obtain the desired frequency. The overall privacy

guarantees are given as follows (proof in App. C.7):

Proposition 4 (Privacy guarantees of TFFE). Let𝑚,𝜃 (𝑚′, 𝜃 ′) be the
parameters of the underlying cPBM applied to federated quantile

(frequency) estimation in Alg. 6. Then, Alg. 6 satisfies 𝜖 (𝜆)-RDP
where 𝜖 (𝜆) = Θ(𝑚𝑑𝜃2𝜆/𝑛 +𝑚′ (2𝑏 − 1)𝜃 ′2𝜆/𝑛).

Extension to multi-round Federated Frequency Estimation
(MFF). Here, we consider briefly the situation where not all users

are not available at the same time, and aggregating all user data

requires multiple rounds of communication, motivated due to the

following practical reasons: (a) the population is too large that the

server has to process the data in batches due to communication and

compute constraints. (b) Users (e.g., mobile devices) may not be

available at the same time to participate in FA as they may face bat-

tery outage, network disconnection, etc.. Under such a constraint,

it may be too inefficient communication-wise to gather all user

reports synchronously twice for quantile and frequency estimation.

We henceforth propose to estimate the quantile or threshold in an

online and private fashion, while performing frequency estimation

simultaneously.
This can be done by, at communication round 𝑟 , requiring the

users, along with their data clipped with the online value of𝐶 ,𝐶 (𝑟 ) ,
to send a private indicator of whether her ∥y𝑖 ∥2 is larger than𝐶 (𝑟 ) :
I∥𝑦 (𝑟 )

𝑖
∥2>𝐶 (𝑟 )

. The private indicator can be privatized with cPBM,

and aggregated via SecSum to estimate the current quantile, 𝛾 (𝑟 ) .
Consequently, it can be used to update 𝐶 geometrically to move it

closer to the desired 𝛾∗: 𝐶 (𝑟+1) ← 𝐶 (𝑟 ) exp(−𝜂 (𝛾 (𝑟 ) − 𝛾∗)), where
𝜂 is the learning rate parameter. Frequency is then estimated with

improved values of 𝐶 at each round, and the overall frequency is

obtained at the end by aggregating results from all round. Details of

the protocol, the validity of Theorem 1 for the multi-round scenario,

and the privacy guarantees can be found in App. D.

5 EXPERIMENTS
We provide empirical studies of our method and protocols in this

Section.
3
We first give an in-depth analysis of each part of our

proposed protocol to demonstrate that our theoretical findings are

well supported empirically. Then, we investigate the performance

of our protocol compared to existing approaches. Due to space

constraints, we relegate some additional results and details to App.

E.

Common setup. Throughout our studies, we use both synthetic

and real-world datasets:

• Synthetic data: We generate both i.i.d. and heterogenous data

following [50] : For i.i.d., each user samples 100 samples from

p, a discrete distribution over [𝑑] with probability proportional

to 1/ 𝑗 for 𝑗 ∈ [𝑑]. For heterogenous dataset, we sample 𝑛 𝜅’s

from Dir(2). Each user 𝑖 draws 100𝜅𝑖 Poisson samples from p𝑖 ∼
Dir(p/2) where p is the same distribution defined for the i.i.d.

dataset.

• Real-world data: Two real-world datasets are used: Foursquare:
We use the long-term (April 2012 to September 2013) global-

scale data of users checking in to various locations [64]. Each

user is assigned an anonymous ID, and the check-in data is a

two-column table containing anonymous ID and location ID.

The location IDs can be divided into different categories (arts,

coffee, restaurant, etc.). We link each user ID to its check-in

categories to build the user histogram. A histogram with 𝑑 bins

is a histogramwith the top-𝑑 most checked-in categories globally.

Sentiment140:We use a dataset of user tweets [37]. For each

user’s tweets, we parse them to words and treat the words as

items for the histogram. A histogram with 𝑑 bins is a histogram

with the top-𝑑 most used words over all users.

5.1 Analyzing each component of our protocol
We first give an in-depth empirical analysis of various proposals

and arguments given in the previous Sections.

3
Code: https://anonymous.4open.science/r/fedfreqest-anonymous-DCF5

6
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Figure 3: Our thoretically derived bound (blue) indeed upper-
bounds the true 𝑙2-error (red) when varying threshold 𝐶.

Figure 4: 𝑙2-error versus privacy budget for various parame-
ters of cPBM.

Figure 5: Federated quantile estimation, comparing our DHT
approach (orange) with flat-histogram (green), hierarchical
histograms (red), and the un-noised histogram (blue). The
orange line almost overlaps with the blue one, demonstrating
excellent agreement with the true quantile.

Our bound in Theorem 1 indeed upper-bounds the true error.
We first empirically verify Theorem 1, which provides an upper

bound on the 𝑙2-error as a function of𝐶 . To do this, we plot the true

𝑙2-error and the upper bound, setting 𝑛 = 10
4, 𝑑 = 50, 𝜃 = 0.2,𝑚 =

30, running the experiments three times and taking the average,

in Figure 3. It can be seen that our upper bounds on the expected

𝑙2-error is indeed larger than the true ones. Similar conclusions

apply to other datasets; see App. E.

i.i.d. dataset 𝐶∗ 0.9 0.92 0.94 0.96 0.98

default 1.160 1.217 1.011 1.141 1.109 1.205

𝑑 = 1000 3.168 3.300 3.391 3.460 3.506 3.603

𝑚 = 10 1.909 1.919 2.003 1.904 2.248 2.146

𝑛 = 10
5

0.334 0.425 0.412 0.366 0.358 0.387

Table 1: 𝑙2-error of OcPBM (𝐶 set to 𝐶∗) and cPBM with 𝐶 set
to various quantile values. Bold values are fixed quantiles
that yield minimal errors. There is no single fixed quantile
that minimizes the 𝑙2-error for all settings.

Our selection of quantile is robust and yields almost minimal
measurement error. We study how sensitive the 𝑙2-error is with

respect to the value of the quantile for various settings of data and

hyperparameters. To do this, we use the i.i.d. dataset, and let the

default setting to be 𝑛 = 10
4, 𝑑 = 50,𝑚 = 30, 𝜃 = 0.2, varying 𝑛,𝑑,𝑚

for other settings. Then, we measure the 𝑙2-error obtained from

cPBM with fixed quantile values. These are to be compared with

OcPBM, where the optimal quantile is chosen adaptively.

The results are in Table 1. We see that the optimal and fixed

quantile varies across different settings, meaning that there is no

single fixed quantile that can achieve empirically minimal error

for all settings. Our results also show that the the error is quantile-

sensitive. However, the error obtained fromOcPBM is either optimal

or remains close to the empirically optimal and fixed quantile, at

most 1.15 times larger. This shows that OcPBM can provably choose

the optimal quantile adaptively based on the properties of data and

hyperparameters, which also means that OcPBM is robust across
datasets and hyperparameters, always achieving close-to-minimal

error.

Hyperparameter selection.We next study how the parameters

of cPBM (𝜃 and𝑚) affect utility and privacy. We plot the 𝑙2-error

(with optimal𝐶) for𝑚 = 4, ..., 256 and different values of 𝜃 in Figure

4 . Note that 𝜃 cannot be too small; otherwise no optimal solution

for Eq. 5 would exist. We find that when fixing 𝜖 , different 𝜃 ’s do

not affect the utility much, but changes the range of 𝜖 given a fixed

range of𝑚’s. As we are interested in 𝜖 in the 𝑂 (1) range, 𝜃 = 0.2 is

most suitable, and for the rest of the paper, we set 𝜃 = 0.2.

Federated quantile estimation.We now compare the proposed

DHT protocol with the baseline approaches (flat histogram andHH),

outlined in Section 4 empirically. We note that one must choose

a suitable range of the histogram, 𝐵 to compare these approaches.

By noticing that ∥y∥2 ≤ 𝐾 ∥x∥2 from Def. A, and ∥x∥2 ≤ ∥x∥1, one
can set the range of 𝐵 to be 𝐾 times the maximum number of items

held by any user, max𝑖 ∥x𝑖 ∥1. 4
Figure 5 compares the quantile function (cumulative distribution

function) of the non-DP (un-noised) histogram, DHT, the (DP) flat

histogram, and HH. We see that the DHT histogram traces the non-

DP histogram better than the flat histogram and HH approaches.

Particularly, the quantile in consideration (Eq. 5) is close to 1 for

large 𝑛; other approaches fluctuate around 1 and cannot give accu-

rate estimation for quantiles we are interested in. See App. E for

other figures and a more quantitative comparison.

4
We consider the maximum number of items held by any user to be a known non-

private value; in practice, commercial devices typically have default upper limits or

can set limits based on their storage capacity.
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Dataset 𝑑 CDP LDP Best𝐶∗ OcPBM 𝐶
median

Normalize Sample(one) Sample(0.25)

i.i.d. 50 0.04 ± 0.00 20.82 ± 9.58 1.21 ± 0.07 1.16 ± 0.18 1.49 ± 0.16 27.3 ± 0.00 28.2 ± 0.00 26.9 ± 0.02

100 0.04 ± 0.00 17.09 ± 11.41 6.02 ± 0.24 6.29 ± 0.52 9.19 ± 0.22 24.4 ± 0.00 24.7 ± 0.00 23.79 ± 0.01

hetero 50 0.35 ± 0.03 43.04 ± 18.12 4.93 ± 0.35 5.31 ± 0.64 10.38 ± 0.13 28.14 ± 0.00 28.40 ± 0.00 28.62 ± 0.12

100 0.31 ± 0.03 51.24 ± 33.84 5.86 ± 0.55 5.35 ± 0.08 19.5 ± 0.02 24.4 ± 0.00 24.7 ± 0.00 24.85 ± 0.04

Foursquare 50 0.49 ± 0.03 27.29 ± 12.1 3.92 ± 0.36 4.47 ± 0.25 6.62 ± 0.10 17.46 ± 0.00 17.76 ± 0.00 17.8 ± 0.23

100 0.48 ± 0.02 36.4 ± 24.64 4.71 ± 0.22 5.90 ± 0.50 6.42 ± 0.00 17.69 ± 0.00 18.00 ± 0.00 18.43 ± 0.24

Sentiment140 50 0.02 ± 0.0 1.84 ± 0.61 0.28 ± 0.03 0.29 ± 0.04 0.41 ± 0.01 1.00 ± 0.00 1.19 ± 0.00 0.37 ± 0.03

100 0.03 ± 0.0 2.39 ± 1.48 0.32 ± 0.02 0.36 ± 0.02 0.39 ± 0.01 1.05 ± 0.00 1.25 ± 0.00 0.48 ± 0.01

Table 2: 𝑙2-errors of two-round federated frequency estimation. Mean (standard deviation) over 5 runs.

Dataset 𝑑 Best𝐶∗ OcPBM 𝐶
small

𝐶
median

i.i.d. 50 0.54 ± 0.04 0.65 ± 0.08 0.94 ± 0.10 3.47 ± 0.11

100 0.7 ± 0.04 0.65 ± 0.05 1.3 ± 0.06 2.93 ± 0.07

hetero 50 2.67 ± 0.20 2.85 ± 0.26 4.97 ± 0.20 10.45 ± 0.08

100 3.22 ± 0.17 3.26 ± 0.09 5.92 ± 0.07 8.81 ± 0.07

Foursquare 50 2.37 ± 0.22 3.26 ± 0.09 5.92 ± 0.07 8.81 ± 0.07

100 2.92 ± 0.27 2.93 ± 0.20 4.85 ± 0.14 6.66 ± 0.06

Sentiment140 50 0.15 ± 0.01 0.14 ± 0.01 0.23 ± 0.01 0.38 ± 0.00

100 0.19 ± 0.01 0.19 ± 0.01 0.27 ± 0.01 0.35 ± 0.01

Table 3: 𝑙2-errors of multi-round federated frequency estima-
tion. Mean (standard deviation) over 5 runs.

5.2 End-to-end comparisons
Here, we first study the empirical performance of our two-phase

FFE protocol (TFFE, Alg. 6) and compares it with existing baselines.

Additionally, we evaluate the multi-round FFE (MFFE) protocol as

studied at the end of Section 4.3.

Baselines. Let us consider existing solutions of bounding user

contribution for performing FFE.

• Normalize: One common approach in the literature, e.g., [6], is

to simply normalize user contribution to one: x𝑖 ← x𝑖/∥x𝑖 ∥2.
• Sample: Another conventional method, considered in, e.g., [15],

is to sample a fixed number of instances fromusers and add noises

proportional to the number of items sent for privatization. We

consider sampling a single item (Sample(one)), and at most 25%

(Sample(0.25)) of the maximum number of items, max𝑖 ∥x𝑖 ∥1,
from each user. In App. E, we consider more variations.

• 𝐶
median

: Furthermore, we consider a heuristic baseline of clipping

user contribution by its median, 𝐶
median

[5].

• CDP: We consider the central-DP setting, where there is no feder-

ated or secure aggregation constraints on performing frequency

estimation. We use the Gaussian mechanism (compared under

the same values of 𝜖, 𝛿) for quantile estimation and frequency

estimation [40].

• LDP: We also make comparisons with the local DP model [22, 30].

Again, we use the Gaussian mechanism for privatization but

with the noise multiplier set to satisfy local (𝜖, 𝛿)-DP instead.

We set 𝑚 = 30 for Alg. 1, 𝑏 = 6 (2
6
bins), 𝜃 ′ = 𝜃 and 𝑚′ = 3

for DHT. This means that the privacy budget is split to around

10:1 between performing frequency estimation and quantile esti-

mation. The total privacy spent is 𝜖 = 2.8 (4) for 𝑑 = 50 (𝑑 = 100)

and 𝛿 = 10
−4
. Table 2 shows the full evaluation results. We see

that non-quantile-clipping methods have significantly larger errors,

suggesting room for improvement in more advanced applications

of FFE presented in, e.g., [6, 15]. Our method, private 𝐶 , on the

other hand, has error very close to the optimal 𝐶∗, basically out-

performing all federated baselines (including additional baselines

in App. E). Note also that the CDP baseline has at least one order-

of-magnitude less error, but it requires different sets of (stronger)

trust assumption. Conversely, the LDP model has a much larger

error as expected. Our DDP model strikes a balance between these

two approaches.

Multi-round Federated Frequency Estimation (MFFE). We

also evaluate the performance of our multi-round FFE protocol

discussed at the end of Section 4. The baselines in consideration are

online quantile estimation but with the target quantile set to match

(1) 𝐶
median

, the median, (2) the per-round optimal quantile, 𝐶
small

,

i.e., the 1 −
√︃

𝐷
4𝑚𝑁𝜃 2

-th quantile of ∥y∥2, where 𝑁 is the per-round

number of user (the motivation of this scenario is discussed in

App. D). Furthermore, we consider the best-case scenario with the

threshold to be the optimal one, 𝐶∗, set non-privately by hindsight.

We see that our method, private 𝐶 , has error very close to the

optimal 𝐶∗, and outperforms other baselines. See App. D for more

details related to the empirical analysis of MFFE.

Additional results. Here, we summarize additional results in-

cluded in App. E, not included in the main paper due to space

constraints. We include detailed results of experiments presented

above, considering more variations of datasets, hyperparameters,

and other factors. We also explore DP mechanisms other than the

proposed cPBM. Additionally, we conduct a detailed study of the

multi-round protocol in App. E.1, examining the convergence speed

of online quantile estimation, learning rate settings, and related

aspects. Finally, we compare the two-phase and multi-round pro-

tocols under the same communication and privacy constraints,

demonstrating that TFFE generally achieves better privacy-utility

trade-offs. Therefore, we recommend using TFFE when practical

issues (e.g., user unavailability) do not hinder the aggregation of all

user reports in one round.

6 CONCLUSION
In this paper, we have presented end-to-end federated frequency es-

timation systems, performing threshold optimization and frequency

estimation with discrete DP mechanisms, that strictly satisfy user

DDP and secure aggregation constraints while achieving nearly

minimal measurement error. We have also provided empirical evi-

dence showing that our protocols are practical and effective.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Bounding Contribution Optimally for Federated Frequency Estimation under User-level Distributed Differential PrivacyConference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Naman Agarwal, Peter Kairouz, and Ziyu Liu. 2021. The skellam mechanism

for differentially private federated learning. Advances in Neural Information
Processing Systems 34 (2021), 5052–5064.

[2] Naman Agarwal, Ananda Theertha Suresh, Felix Xinnan X Yu, Sanjiv Kumar, and

Brendan McMahan. 2018. cpSGD: Communication-efficient and differentially-

private distributed SGD. Advances in Neural Information Processing Systems 31
(2018).

[3] Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and Aaron Steele. 2012. Secure

computation on floating point numbers. Cryptology ePrint Archive (2012).
[4] KareemAmin, Alex Kulesza, AndresMunoz, and Sergei Vassilvtiskii. 2019. Bound-

ing user contributions: A bias-variance trade-off in differential privacy. In Inter-
national Conference on Machine Learning. PMLR, 263–271.

[5] Galen Andrew, Om Thakkar, Brendan McMahan, and Swaroop Ramaswamy.

2021. Differentially private learning with adaptive clipping. Advances in Neural
Information Processing Systems 34 (2021), 17455–17466.

[6] Eugene Bagdasaryan, Peter Kairouz, Stefan Mellem, Adrià Gascón, Kallista

Bonawitz, Deborah Estrin, and Marco Gruteser. 2021. Towards sparse federated

analytics: Location heatmaps under distributed differential privacy with secure

aggregation. arXiv preprint arXiv:2111.02356 (2021).
[7] Borja Balle, Gilles Barthe, Marco Gaboardi, Justin Hsu, and Tetsuya Sato. 2020.

Hypothesis testing interpretations and renyi differential privacy. In International
Conference on Artificial Intelligence and Statistics. PMLR, 2496–2506.

[8] Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. 2019. The privacy

blanket of the shuffle model. In Advances in Cryptology–CRYPTO 2019: 39th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
18–22, 2019, Proceedings, Part II 39. Springer, 638–667.

[9] Ergute Bao, Yizheng Zhu, Xiaokui Xiao, Yin Yang, Beng Chin Ooi, Benjamin

Hong Meng Tan, and Khin Mi Mi Aung. 2022. Skellam mixture mechanism: a

novel approach to federated learning with differential privacy. arXiv preprint
arXiv:2212.04371 (2022).

[10] James Henry Bell, Kallista A Bonawitz, Adrià Gascón, Tancrède Lepoint, and

Mariana Raykova. 2020. Secure single-server aggregation with (poly) logarithmic

overhead. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security. 1253–1269.

[11] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghu-

nathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard

Seefeld. 2017. Prochlo: Strong privacy for analytics in the crowd. In Proceedings
of the 26th Symposium on Operating Systems Principles. 441–459.

[12] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan

McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Prac-

tical secure aggregation for privacy-preserving machine learning. In proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
1175–1191.

[13] Mark Bun and Thomas Steinke. 2016. Concentrated differential privacy: Simpli-

fications, extensions, and lower bounds. In Theory of Cryptography Conference.
Springer, 635–658.

[14] Clément L Canonne, Gautam Kamath, and Thomas Steinke. 2020. The discrete

gaussian for differential privacy. Advances in Neural Information Processing
Systems 33 (2020), 15676–15688.

[15] Karan Chadha, Junye Chen, John Duchi, Vitaly Feldman, Hanieh Hashemi,

Omid Javidbakht, Audra McMillan, and Kunal Talwar. 2023. Differentially

Private Heavy Hitter Detection using Federated Analytics. arXiv preprint
arXiv:2307.11749 (2023).

[16] T-H Hubert Chan, Elaine Shi, and Dawn Song. 2011. Private and continual release

of statistics. ACM Transactions on Information and System Security (TISSEC) 14, 3
(2011), 1–24.

[17] Mingqing Chen, Ananda Theertha Suresh, Rajiv Mathews, Adeline Wong, Cyril

Allauzen, Françoise Beaufays, and Michael Riley. 2019. Federated learning of

n-gram language models. arXiv preprint arXiv:1910.03432 (2019).
[18] Wei-Ning Chen, Peter Kairouz, and Ayfer Ozgur. 2020. Breaking the

communication-privacy-accuracy trilemma. Advances in Neural Information
Processing Systems 33 (2020), 3312–3324.

[19] Wei-Ning Chen, Ayfer Ozgur, GrahamCormode, andAkash Bharadwaj. 2023. The

communication cost of security and privacy in federated frequency estimation. In

International Conference on Artificial Intelligence and Statistics. PMLR, 4247–4274.

[20] Wei-Ning Chen, Ayfer Ozgur, and Peter Kairouz. 2022. The poisson binomial

mechanism for unbiased federated learning with secure aggregation. In Interna-
tional Conference on Machine Learning. PMLR, 3490–3506.

[21] Albert Cheu, Adam Smith, Jonathan Ullman, David Zeber, and Maxim Zhilyaev.

2019. Distributed differential privacy via shuffling. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques. Springer,
375–403.

[22] Graham Cormode, Samuel Maddock, and Carsten Maple. 2021. Frequency esti-

mation under local differential privacy [experiments, analysis and benchmarks].

arXiv preprint arXiv:2103.16640 (2021).

[23] Graham Cormode and Igor Markov. 2022. Federated calibration and evaluation

of binary classifiers. arXiv preprint arXiv:2210.12526 (2022).
[24] Rachel Cummings, Vitaly Feldman, Audra McMillan, and Kunal Talwar. 2022.

Mean estimation with user-level privacy under data heterogeneity. Advances in
Neural Information Processing Systems 35 (2022), 29139–29151.

[25] Cynthia Dwork. 2006. Differential Privacy, In 33rd International Colloquium

on Automata, Languages and Programming, part II (ICALP 2006). 4052, 1–12.

https://www.microsoft.com/en-us/research/publication/differential-privacy/

[26] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-

brating noise to sensitivity in private data analysis. In Theory of cryptography
conference. Springer, 265–284.

[27] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum. 2010. Dif-

ferential privacy under continual observation. In Proceedings of the forty-second
ACM symposium on Theory of computing. 715–724.

[28] Cynthia Dwork and Guy N Rothblum. 2016. Concentrated differential privacy.

arXiv preprint arXiv:1603.01887 (2016).

[29] Ahmed Roushdy Elkordy, Yahya H Ezzeldin, Shanshan Han, Shantanu Sharma,

Chaoyang He, Sharad Mehrotra, Salman Avestimehr, et al. 2023. Federated

analytics: A survey. APSIPA Transactions on Signal and Information Processing
12, 1 (2023).

[30] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. Rappor: Random-

ized aggregatable privacy-preserving ordinal response. In Proceedings of the 2014
ACM SIGSAC conference on computer and communications security. 1054–1067.

[31] Vitaly Feldman, Cristobal Guzman, and Santosh Vempala. 2017. Statistical query

algorithms for mean vector estimation and stochastic convex optimization. In

Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms. SIAM, 1265–1277.

[32] Vitaly Feldman, Audra McMillan, and Kunal Talwar. 2022. Hiding among the

clones: A simple and nearly optimal analysis of privacy amplification by shuffling.

In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS).
IEEE, 954–964.

[33] Adria Gascon, Peter Kairouz, Ziteng Sun, and Ananda Theertha Suresh. 2023. Fed-

erated heavy hitter recovery under linear sketching. In International Conference
on Machine Learning. PMLR, 10997–11012.

[34] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller.

2020. Inverting gradients-how easy is it to break privacy in federated learning?

Advances in Neural Information Processing Systems 33 (2020), 16937–16947.
[35] Badih Ghazi, Ravi Kumar, and Pasin Manurangsi. 2021. User-level differen-

tially private learning via correlated sampling. Advances in Neural Information
Processing Systems 34 (2021), 20172–20184.

[36] Jennifer Gillenwater, Matthew Joseph, and Alex Kulesza. 2021. Differentially

private quantiles. In International Conference on Machine Learning. PMLR, 3713–

3722.

[37] Alec Go, Richa Bhayani, and Lei Huang. 2009. Twitter sentiment classification

using distant supervision. CS224N project report, Stanford 1, 12 (2009), 2009.

[38] Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. 2009. Boosting

the accuracy of differentially-private histograms through consistency. arXiv
preprint arXiv:0904.0942 (2009).

[39] James Honaker. 2015. Efficient use of differentially private binary trees. Theory
and Practice of Differential Privacy (TPDP 2015), London, UK 2 (2015), 26–27.

[40] Ziyue Huang, Yuting Liang, and Ke Yi. 2021. Instance-optimal mean estimation

under differential privacy. Advances in Neural Information Processing Systems 34
(2021), 25993–26004.

[41] Jiankai Jin, Eleanor McMurtry, Benjamin IP Rubinstein, and Olga Ohrimenko.

2022. Are we there yet? timing and floating-point attacks on differential privacy

systems. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 473–488.
[42] Peter Kairouz, Ziyu Liu, and Thomas Steinke. 2021. The distributed discrete gauss-

ian mechanism for federated learning with secure aggregation. In International
Conference on Machine Learning. PMLR, 5201–5212.

[43] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi

Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cor-

mode, Rachel Cummings, et al. 2021. Advances and open problems in federated

learning. Foundations and Trends® in Machine Learning 14, 1–2 (2021), 1–210.

[44] B Kashin. 1977. Section of some finite-dimensional sets and classes of smooth

functions (in russian) izv. Acad. Nauk. SSSR 41 (1977), 334–351.

[45] Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhod-

nikova, and Adam Smith. 2011. What can we learn privately? SIAM J. Comput.
40, 3 (2011), 793–826.

[46] Tejas Kulkarni. 2019. Answering range queries under local differential privacy.

In Proceedings of the 2019 International Conference on Management of Data. 1832–
1834.

[47] Daniel Levy, Ziteng Sun, Kareem Amin, Satyen Kale, Alex Kulesza, Mehryar

Mohri, and Ananda Theertha Suresh. 2021. Learning with user-level privacy.

Advances in Neural Information Processing Systems 34 (2021), 12466–12479.
[48] Seng Pei Liew, Tsubasa Takahashi, Shun Takagi, Fumiyuki Kato, Yang Cao, and

Masatoshi Yoshikawa. 2022. Network shuffling: Privacy amplification via random

walks. In Proceedings of the 2022 International Conference on Management of Data.

9

https://www.microsoft.com/en-us/research/publication/differential-privacy/


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

773–787.

[49] Yuhan Liu, Ananda Theertha Suresh, Felix Xinnan X Yu, Sanjiv Kumar, and

Michael Riley. 2020. Learning discrete distributions: user vs item-level privacy.

Advances in Neural Information Processing Systems 33 (2020), 20965–20976.
[50] Yuhan Liu, Ananda Theertha Suresh, Wennan Zhu, Peter Kairouz, and Marco

Gruteser. 2022. Histogram Estimation under User-level Privacy with Heteroge-

neous Data. arXiv preprint arXiv:2206.03008 (2022).
[51] Yurii Lyubarskii and Roman Vershynin. 2010. Uncertainty principles and vector

quantization. IEEE Transactions on Information Theory 56, 7 (2010), 3491–3501.

[52] MohamadMansouri, Melek Önen,Wafa Ben Jaballah, andMauro Conti. 2023. Sok:

Secure aggregation based on cryptographic schemes for federated learning. In

PETS 2023, 23rd Privacy Enhancing Technologies Symposium, Vol. 2023. 140–157.

[53] Luca Melis, George Danezis, and Emiliano De Cristofaro. 2015. Efficient private

statistics with succinct sketches. arXiv preprint arXiv:1508.06110 (2015).
[54] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.

2019. Exploiting unintended feature leakage in collaborative learning. In 2019
IEEE symposium on security and privacy (SP). IEEE, 691–706.

[55] Ilya Mironov. 2017. Renyi differential privacy. In Computer Security Foundations
Symposium (CSF), 2017 IEEE 30th. IEEE, 263–275.

[56] Shyam Narayanan, Vahab Mirrokni, and Hossein Esfandiari. 2022. Tight and

robust private mean estimation with few users. In International Conference on
Machine Learning. PMLR, 16383–16412.

[57] Krishna Pillutla, Yassine Laguel, Jérôme Malick, and Zaid Harchaoui. 2022. Dif-

ferentially private federated quantiles with the distributed discrete gaussian

mechanism. In International Workshop on Federated Learning: Recent Advances
and New Challenges.

[58] Daniel Ramage and Stefano Mazzocchi. 2020. Federated Analytics: Collaborative

Data Science without Data Collection. Blog. https://blog.research.google/2020/

05/federated-analytics-collaborative-data.html

[59] Mher Safaryan, Egor Shulgin, and Peter Richtárik. 2022. Uncertainty principle

for communication compression in distributed and federated learning and the

search for an optimal compressor. Information and Inference: A Journal of the
IMA 11, 2 (2022), 557–580.

[60] Adam Smith. 2011. Privacy-preserving statistical estimation with optimal conver-

gence rates. In Proceedings of the forty-third annual ACM symposium on Theory
of computing. 813–822.

[61] Christos Tzamos, Emmanouil-Vasileios Vlatakis-Gkaragkounis, and Ilias Zadik.

2020. Optimal private median estimation under minimal distributional assump-

tions. Advances in Neural Information Processing Systems 33 (2020), 3301–3311.
[62] JingfengWu,Wennan Zhu, Peter Kairouz, and Vladimir Braverman. 2023. Private

Federated Frequency Estimation: Adapting to the Hardness of the Instance. arXiv
preprint arXiv:2306.09396 (2023).

[63] Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke. 2010. Differential privacy

via wavelet transforms. IEEE Transactions on knowledge and data engineering 23,

8 (2010), 1200–1214.

[64] Dingqi Yang, Daqing Zhang, and Bingqing Qu. 2016. Participatory cultural

mapping based on collective behavior data in location-based social networks.

ACM Transactions on Intelligent Systems and Technology (TIST) 7, 3 (2016), 1–23.
[65] Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep leakage from gradients.

Advances in neural information processing systems 32 (2019).

10

https://blog.research.google/2020/05/federated-analytics-collaborative-data.html
https://blog.research.google/2020/05/federated-analytics-collaborative-data.html


1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Bounding Contribution Optimally for Federated Frequency Estimation under User-level Distributed Differential PrivacyConference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Notation Definition

𝑛 total number of users, 𝑛 ∈ N
𝑑 domain size of histogram, 𝑑 ∈ N
𝑥𝑖 [ 𝑗] number of item 𝑗 held by user 𝑖 , x𝑖 ∈ R𝑑
𝑦𝑖 [𝑘] 𝑘-th coordinate of user 𝑖’s representation,

y𝑖 ∈ R𝐷
𝑍𝑖 [𝑘] 𝑘-th coordinate of user 𝑖’s discrete value

to be sent to SecSum protocols, Z ∈ Z𝐷
𝑀

𝐷 dimension of Kashin’s representation, 𝐷 ∈ N
𝐶 clipping threshold, 𝐶 ∈ R+
𝑈 tight frame,𝑈 ∈ R𝑑×𝐷
𝑚,𝑚′ cPBM parameter,𝑚,𝑚′ ∈ N
𝜃 , 𝜃 ′ cPBM parameter, 𝜃, 𝜃 ′ ∈ [0, 1/4]
𝐵 range of histogram, 𝐵 ∈ R
Δ Bin size, Δ ∈ R
𝑏 number of levels in the binary tree, 𝑏 ∈ N
𝑟 𝑟 -th round of multi-round communication, 𝑟 ∈ N
𝑅 number of communication rounds, 𝑅 ∈ N
𝑁 number of users per round, 𝑁 ∈ N
𝜂 learning rate, 𝜂 ∈ R

Table 4: Summary of notations

APPENDIX
Table 4 shows the notations used throughout the paper.

A ADDITIONAL RELATEDWORK
Industrial application of federated frequency estimation.
Google’s Pixel phones leverage federated frequency estimation

to show users what songs are playing in the room around them

[58].

Secure aggregation protocols. We note that there are crypto-

graphic primitives that work with floating-point representation,

applicable to common DP mechanisms like Gaussian mechanism

[3]. However, they do not scale well for cross-device applications

of our interest, involving at least thousands of users. Moreover,

these primitives may be vulnerable to floating-point representation

attack, increasing attack surfaces [41]. As far as we know, SecAgg

is the leading cryptographic solution that is succesfully applied

to real-world products,
5
and we henceforth focus on studying it

in this paper. We also note that there are also alternative secure

technologies applicable to large-scale cross-device applications,

such as the use of trusted execution environment and shuffling

[8, 11, 21, 32, 48], but they require the use of specialized hardware

and face other risks (e.g., side-channel attacks).

User-level privacy. Previous work in the literature studies user-

level privacy with assumptions on data distribution [24, 35, 47, 49,

56], except [4, 40, 50], whereas ours does not require such assump-

tions. [4, 40, 50] however put attention mostly on the central-DP

settings, unlike ours, which take DDP constraints and federated

settings into account.

5
https://research.google/blog/distributed-differential-privacy-for-federated-

learning/

Applications of Kashin’s representation.We note that Kashin’s

representation has applications in the local DP model, and in the

context of communication efficiency [18, 31, 59].

B ALGORITHM FOR COMPUTING THE
KASHIN’S REPRESENTATION

The tight frame𝑈 is generated as follows: one generates a random

orthogonal matrix of size 𝐷 and selects the first 𝑑 columns (in

scipy, it is scipy.stats.ortho_group.rvs(dim=D).T[:, 0:d]).
To compute the Kashin’s representation, we use the algorithm

outlined in the original paper [51]:

Input:

• A tight frame (𝑢𝑖 )𝐷𝑖=1
in R𝑑 which satisfies the uncertainty

principle with parameters 𝜂, 𝜈 ∈ (0, 1).
• A vector 𝑥 ∈ R𝑑 and a number of iterations 𝑟 .

Output: Kashin’s decomposition of 𝑥 with level𝐾 = (1−𝜂)−1𝜈−1/2

and with accuracy 𝜂𝑟 ∥𝑥 ∥2. The algorithm looks for coefficients

𝑎1, . . . , 𝑎𝐷 such that






𝑥 − 𝐷∑︁
𝑖=1

𝑎𝑖𝑢𝑖







2

≤ 𝜂𝑟 ∥𝑥 ∥2,

max

𝑖
|𝑎𝑖 | ≤

𝐾
√
𝐷
∥𝑥 ∥2 .

Initialize coefficients and truncation level:

𝑎𝑖 ← 0, 𝑖 = 1, . . . , 𝐷 ;

𝑀 ← ∥𝑥 ∥2√
𝜈𝐷

.

Iterate the following 𝑟 times:

• Compute the Kashin’s representation of 𝑥 and truncate at

level𝑀 :

𝑏𝑖 ← ⟨𝑥,𝑢𝑖 ⟩, ˆ𝑏𝑖 ← 𝑡𝑀 (𝑏𝑖 ), 𝑖 = 1, . . . , 𝑁 .

• Reconstruct and compute the error:

𝑇𝑥 ←
𝐷∑︁
𝑖=1

ˆ𝑏𝑖𝑢𝑖 ; 𝑥 ← 𝑥 −𝑇𝑥.

• Update Kashin’s coefficients and the truncation level:

𝑎𝑖 ← 𝑎𝑖 +
√
𝐷 ˆ𝑏𝑖 , 𝑖 = 1, . . . , 𝐷 ;

𝑀 ← 𝜂𝑀.

C ADDITIONAL STATEMENTS AND PROOFS
C.1 RDP-to-DP conversion
Lemma 3 (RDP-to-DP conversion [7, 14]). A mechanismM sat-

isfying (𝜆, 𝜖 (𝜆))-RDP also satisfies (𝜖, 𝛿)-DP, where 1 < 𝛿 < 0 is

arbitrary and 𝜖 is given by

𝜖 = min

𝜆

(
𝜖 (𝜆) + log (1/𝜆𝛿) + (𝜆 − 1) log (1 − 1/𝜆)

𝜆 − 1

)
. (8)
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C.2 Proof of Lemma 2
Let us reiterate Lemma 2 below.

Lemma 4 (cPBM RDP bounds). The SecSum of the cPBM outputs

of 𝑛 users is differentially private, and its RDP of order 𝜆 bounded

by

𝜖 (𝜆) ≤ 𝑚𝑑

𝜆 − 1

log max (Π1,Π2) ,

where

Π1 =

𝑛′+1∑︁
𝑚=0

Bin(𝑚,𝑛′ + 1,
1

2

+ 𝜃 )𝑒𝜆𝜉𝑚 ,

𝜉𝑚 = log( 1 + 2𝜃

1 − 2𝜃

𝑛′ + 1 −𝑚
𝑛′ + 1

+ 1 − 2𝜃

1 + 2𝜃

𝑚

𝑛′ + 1

),

Π2 =

𝑛′+1∑︁
𝑚=0

Bin(𝑚,𝑛′, 1

2

−𝜃 ) ( 1
2

+𝜃 ) ( 𝑚

𝑛′ −𝑚 + 1

1 + 2𝜃

1 − 2𝜃
+1 − 2𝜃

1 + 2𝜃
)𝑒−𝜆𝜇𝑚 ,

𝜇𝑚 = log( 1 + 2𝜃

1 − 2𝜃

𝑚

𝑛′ + 1

+ 1 − 2𝜃

1 + 2𝜃

𝑛′ + 1 −𝑚
𝑛′ + 1

),

and 𝑛′ = ⌈𝑛−1

2
⌉, Bin(𝑚,𝑛, 𝑝) =

(𝑛
𝑚

)
𝑝𝑚 (1 − 𝑝)𝑛−𝑚 .

Proof. Since each coordinate of x has bounded norm, the overall

RDP can be obtained by composing the one-dimensional (scalar)

case of cPBM by 𝑑 times.

For the scalar case, Lemma 3.6 of [20] tells us that the RDP of

PBM is equivalent to calculating the maximum of the following

two divergences:

(1) 𝐷𝜆

(
𝑃

Ber( 1

2
−𝜃 )+Binom(𝑛′, 1

2
+𝜃 ) | |𝑃Binom(𝑛′+1, 1

2
+𝜃 )

)
(2) 𝐷𝜆

(
𝑃

Binom(𝑛′+1, 1

2
−𝜃 ) | |𝑃Ber( 1

2
+𝜃 )+Binom(𝑛′, 1

2
−𝜃 )

)
We give the explicit expression of these below. Note that for both

the divergences, they are a summation of the event-level divergence

over𝑚 from 0 to 𝑛′ + 1,

∑𝑛′+1
𝑚=0

𝑃 (𝑚)𝜆
𝑄 (𝑚)𝜆−1

. Fixing𝑚, we expand the

Bernoulli term to evaluate the divergences explicitly. We also write

Bin(𝑚,𝑛, 𝑝) =
(𝑛
𝑚

)
𝑝𝑚 (1 − 𝑝)𝑛−𝑚 .

First term. Since

𝑃 (𝑚) = ( 1
2

− 𝜃 )Bin(𝑚 − 1, 𝑛′,
1

2

+ 𝜃 ) + ( 1
2

+ 𝜃 )Bin(𝑚,𝑛′, 1

2

+ 𝜃 ),

𝑄 (𝑚) = Bin(𝑚,𝑛′ + 1,
1

2

+ 𝜃 ),

and

Bin(𝑚 − 1, 𝑛′, 1

2
+ 𝜃 )

Bin(𝑚,𝑛′ + 1, 1

2
+ 𝜃 )

=
𝑚

𝑛′ + 1

1

1

2
+ 𝜃

,

Bin(𝑚,𝑛′, 1

2
+ 𝜃 )

Bin(𝑚,𝑛′ + 1, 1

2
+ 𝜃 )

=
𝑛′ + 1 −𝑚
𝑛′ + 1

1

1

2
− 𝜃

,

rearranging the terms, we get(
𝑃 (𝑚)
𝑄 (𝑚)

)𝜆
=

(
1 + 2𝜃

1 − 2𝜃

𝑛′ + 1 −𝑚
𝑛′ + 1

+ 1 − 2𝜃

1 + 2𝜃

𝑚

𝑛′ + 1

)𝜆
C 𝑒𝜆𝜉𝑚

This produces the expression of Π1 in Lemma 2 summing up 𝑚

from 0 to 𝑛′ + 1.

Second term. Similarly,

𝑃 (𝑚)
𝑄 (𝑚) =

Bin(𝑚,𝑛′ + 1, 1

2
− 𝜃 ))

( 1
2
+ 𝜃 )Bin(𝑚 − 1, 𝑛′, 1

2
− 𝜃 ) + ( 1

2
− 𝜃 )Bin(𝑚,𝑛′, 1

2
− 𝜃 )

=

(𝑛′+1
𝑚

)
( 1

2
− 𝜃 )𝑚 ( 1

2
+ 𝜃 )𝑛′+1−𝑚

( 1
2
+ 𝜃 )

( 𝑛′
𝑚−1

)
( 1

2
− 𝜃 )𝑚−1 ( 1

2
+ 𝜃 )𝑛′+1−𝑚 + ( 1

2
− 𝜃 )

(𝑛′
𝑚

)
( 1

2
− 𝜃 )𝑚 ( 1

2
+ 𝜃 )𝑛′−𝑚

=
1

𝑚
𝑛′+1

1

1

2
−𝜃 (

1

2
+ 𝜃 ) + 𝑛′+1−𝑚𝑛′+1

1

1

2
+𝜃 (

1

2
− 𝜃 )

=
1

1+2𝜃
1−2𝜃

𝑚
𝑛′+1 +

1−2𝜃
1+2𝜃

𝑛′+1−𝑚
𝑛′+1

C 𝑒−𝜇𝑚

This yields the 𝜇 term of Π2 in Lemma 2 . Noting that

𝑄 (𝑚) = ( 1
2

+ 𝜃 )Bin(𝑚 − 1, 𝑛′,
1

2

− 𝜃 ) + ( 1
2

− 𝜃 )Bin(𝑚,𝑛′, 1

2

− 𝜃 )

= Bin(𝑚,𝑛′, 1

2

− 𝜃 ) ( 1
2

+ 𝜃 ) ( 𝑚

𝑛′ −𝑚 + 1

1

2
+ 𝜃

1

2
− 𝜃
+

1

2
− 𝜃

1

2
+ 𝜃
)

= Bin(𝑚,𝑛′, 1

2

− 𝜃 ) ( 1
2

+ 𝜃 ) ( 𝑚

𝑛′ −𝑚 + 1

1 + 2𝜃

1 − 2𝜃
+ 1 − 2𝜃

1 + 2𝜃
),

we obtain Π2 combining the above two expressions and summing

up𝑚 from 0 to 𝑛′ + 1. ■

C.3 Proof of Theorem 1
First, we write x’s in its Kashin’s representation. From Equation 1

and the definition of Kashin’s representation,

∥x̄ − ˆ̄x∥2
2
=

𝑑∑︁
𝑗=1

(
1

𝑛

𝑛∑︁
𝑖=1

(
𝐷∑︁
𝑘=1

𝑈 𝑗𝑘 (𝑦𝑖 [𝑘] − 𝑦𝑖 [𝑘])
)2

=

𝑑∑︁
𝑗=1

(
𝐷∑︁
𝑘=1

𝑈 𝑗𝑘 (𝑦· [𝑘] − 𝑦· [𝑘])
)2

Here, 𝑦· [𝑘] B 1

𝑛

∑𝑛
𝑖=1

𝑦𝑖 [𝑘]. Using Cauchy–Schwarz inequality,

𝑑∑︁
𝑗=1

(
𝐷∑︁
𝑘=1

𝑈 𝑗𝑘 (𝑦· [𝑘] − 𝑦· [𝑘])
)2

≤
𝐷∑︁
𝑘 ′=1

𝑑∑︁
𝑗=1

𝑈 2

𝑗𝑘 ′

𝐷∑︁
𝑘=1

(𝑦· [𝑘] − 𝑦· [𝑘])2

= 𝑑 ∥𝑦· − 𝑦· ∥22

due to the orthogonal properties of 𝑈 . This shows that up to a

multiplicative constant, the expected 𝑙2-error of x is equivalent to

that of 𝑦. We henceforth analyze the expected 𝑙2-error in terms of

the Kashin’s representation, i.e., ∥𝑦· − 𝑦· ∥2
2
.

By Jensen’s inequality,

E∥y· − ŷ· ∥2 ≤

√√√
E

𝐷∑︁
𝑘=1

(𝑦· [𝑘] − 𝑦· [𝑘])2

By noting that

(E [𝑦· [𝑘]] − 𝑦· [𝑘])2 = (E [𝑦· [𝑘]])2 − 2E [𝑦· [𝑘]] 𝑦· [𝑘] + 𝑦· [𝑘]2,
12
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and that Var(𝑦· [𝑘]) = E(𝑦· [𝑘]2) − (E[𝑦· [𝑘]])2, we perform bias-

variance decomposition as follows.√√√
E

𝐷∑︁
𝑘=1

(y· [𝑘] − ŷ· [𝑘])2 =

√︃
∥E[ŷ·] − y· ∥2

2
+ 𝐷 · Var(𝑦·)

≤ ∥E[ŷ·] − y· ∥2 +
√︁
𝐷 · Var(𝑦·)

where Var(𝑦·) ≤ 𝐶2

4𝑚𝑛𝜃 2
. Note that

∥E[ŷ·] − y· ∥2 =
1

𝑛
∥

𝑛∑︁
𝑖:∥y𝑖 ∥2>𝐶

(
y𝑖 −

y𝑖
∥y𝑖 ∥2

)
∥2

=
1

𝑛

√√√√ ∑︁
𝑖:∥y𝑖 ∥2>𝐶

𝐷∑︁
𝑘=1

𝑦2

𝑖
[𝑘] (1 − 𝐶

∥y𝑖 ∥2
)2

=
1

𝑛

√︄ ∑︁
𝑖:∥y𝑖 ∥2>𝐶

(∥y𝑖 ∥2 −𝐶)2

≤ 1

𝑛

𝑛∑︁
𝑖=1

max(0, ∥y𝑖 ∥2 −𝐶),

using the fact that 𝑙2 distance is always smaller than 𝑙1 distance.

Summarizing, we haveE∥x̄−x̂∥2 ≤ 𝑑 ·∥y·−ŷ· ∥2 ≤ 1

𝑛

∑𝑛
𝑖=1

max(0, ∥y𝑖 ∥2−
𝐶) +𝐶

√︃
𝐷

4𝑚𝑛𝜃 2
, as required.

C.4 Proof of Proposition 1
For each bin, the variance is 1/4𝑚𝑛2𝜃2

according to the argument

given in Section 3.2. By summing up all bins, 𝐵/Δ in total, we obtain

the desired variance.

C.5 Proof of Proposition 2
Any quantile can be determined using at most log

2
(𝐵/Δ) nodes

[16, 27]. The conclusion follows from the argument presented in

the proof of Proposition 1.

C.6 Proof of Proposition 3
Notice that at each level of the binary tree, the range can only cut

through one of the nodes. Moreover, at level 𝑙 , |𝑠𝐿 [𝑤] − 𝑠𝑅 [𝑤] | can
only be at most 2

𝑙−1
. the variance of the quantile 𝛾 B

𝑐 [1:𝑣 ]
𝑛 is then

upper-bounded by (slightly abusing notations by writing �̂�𝑙 [𝑤] as
�̂�𝑙 )

Var( 𝑐 [1 : 𝑣]
𝑛
) ≤

∑︁
𝑙

2
2𝑙−2

2
2𝑙

Var( �̂�𝑙
𝑛
) =

∑︁
𝑙

1

4

Var( �̂�𝑙
𝑛
)

The variance of
�̂�𝑙

𝑛 applied with PBM with parameters 𝜃 and𝑚 is

bounded by
1

4𝑚𝑛2𝜃 2
. Writing the discretization error as Δ C 𝐵/2𝑏 ,

we have Var(𝛾) ≤ log
2
(𝐵/Δ)

16𝑚𝑛2𝜃 2
.

C.7 Proof of Proposition 4
The underlying DP mechansim for both federated quantile and

frequency estimation is cPBM, which satisfies RDP as described in

Section 3, with one difference in federated quantile estimation: as

we apply cPBM independently to 2
𝑏 − 1 Haar coefficients, the RDP

of quantile estimation equals to those given in Lemma 2 with 𝑑 set

to 2
𝑏 − 1 instead. By RDP composition and Lemma 2, we obtain the

required statement.

D MULTI-ROUND FEDERATED FREQUENCY
ESTIMATION

Suppose there are 𝑅 rounds of user-server communication. Let 𝑁

be the number of users per round, and assume that each user only

reports once in the whole cycle of FFE. Then, we have that the

product 𝑁 · 𝑅 equals 𝑛, the population. Let 𝑥 (𝑟 ) be the user data
contributing to FFE, and 𝑥 (𝑟 ) be the estimated frequency at round

𝑟 ∈ [𝑅]. Our target is to estimate 𝑥 = 1

𝑅

∑𝑅
𝑟=1

𝑥 (𝑟 ) with minimum

expected 𝑙2-error.

Since at each round, the number of users is now 𝑁 instead of

𝑛, one may wonder if we should modify the optimal quantile in

Equation 5 to 1−
√︃

𝐷
4𝑚𝑁𝜃 2

-th quantile. In fact, the optimal quantile

is still 1 −
√︃

𝐷
4𝑚𝑛𝜃 2

, under mild assumptions, as shown below.

Corollary 1. Let 𝑥 (𝑟 ) be the estimated frequency at round 𝑟 . As-

sume that users sending reports each round are i.i.d. samples, i.e.,

E
[

1

𝑅

∑𝑅
𝑟=1

1

𝑁

∑𝑁
𝑖=1

𝑥
(𝑟 )
𝑖

]
= E

[
1

𝑁

∑𝑁
𝑖=1

𝑥
(𝑟 )
𝑖

]
= 1

𝑛

∑𝑛
𝑖=1

𝑥𝑖 . Setting

the threshold to 1−
√︃

𝐷
4𝑚𝑛𝜃 2

at each round to estimate 𝑥𝑟 minimizes

the upper bound of the expected 𝑙2-error as in Equation 4.

Proof. In the multi-round setting, the upper bound given in

Equation 4 stays the same except with the single-round estimator

ˆ̄x replaced by the multi-round estimator,
1

𝑅

∑𝑅
𝑟=1

ˆ̄x(𝑟 ) . Let y𝑟
𝑖
be

the Kashin’s representation of user 𝑖 at round 𝑟 . By repeating the

argument of the proof of Theorem 1, we arrive at

E∥x̄ − ˆ̄x∥2 ≤
1

𝑅

𝑅∑︁
𝑟=1

1

𝑁

𝑁∑︁
𝑖=1

max(0, ∥y𝑟𝑖 ∥2 −𝐶) +𝐶
√︂

𝐷

4𝑚𝑛𝜃2

≈ 1

𝑁

𝑁∑︁
𝑖=1

max(0, ∥y(𝑟 )
𝑖
∥2 −𝐶) +𝐶

√︂
𝐷

4𝑚𝑛𝜃2

for all 𝑟 using the i.i.d. assumption. Similar to Equation 5, we opti-

mize the threshold to obtain

0 = − 1

𝑛

∑︁
𝑖:∥𝑦 (𝑟 )

𝑖
∥2>𝐶

1 +
√︂

𝐷

4𝑚𝑛𝜃2

Hence, setting the threshold such that the quantile is 1−
√︃

𝐷
4𝑚𝑛𝜃 2

at

each round minimizes the upper bound of the expected 𝑙2-error. ■

Online quantile estimation. Next, we consider how to estimate

the optimal threshold in an online and private fashion. We take in-

spirations from [5] by requiring the users to send extra information

(privately) about the threshold along with the usual frequencies at

each round. Algorithm 7 outlines our protocol, MFFE.

Strategy advantages. This strategy has several attractive proper-

ties:

• efficiency: user participates only once as the threshold is

estimated along with frequency measurement in the same

round and only a few extra bits are required.

• The online estimation problem is convex and the geometric

update guarantees convergence [5].
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Algorithm 7Multi-round FFE protocol (MFFE)

1: Inputs: Data 𝑥𝑖 . Target quantile 𝛾∗. Tight frame𝑈 . Parameters

𝑅, 𝑁, 𝜂, 𝜃, 𝜃 ′,𝑚,𝑚′,𝐶
2: Output: Estimated frequencies

3: 𝐶 (1) ← 𝐶

4: For 𝑟 ∈ [𝑅] :

5: User-side:
6: Step 1: Run OcPBM on 𝑥

(𝑟 )
𝑖

with 𝜃 = 𝜃,𝑚 =𝑚,𝐶 = 𝐶 (𝑟 )

and SecSum

7: Step 2: Run cPBM with parameters 𝜃 = 𝜃 ′,𝑚 =𝑚′,𝐶 = 1

on 𝑦
(𝑟 )
𝑖

= I∥𝑦 (𝑟 )
𝑖
∥2>𝐶 (𝑟 )

, and SecSum

8: Server-side: Update 𝑥 ← 1

𝑅
𝑥 (𝑟 ) ,𝐶 (𝑟+1) ←

𝐶 (𝑟 ) exp(−𝜂 (𝛾 (𝑟 ) − 𝛾∗)), and send 𝐶 (𝑟+1) to users

9: Return: 𝑥

• The update rule allows quick convergence to the true quan-

tile even if the initial values are quite different.

Overall DP guarantees. Note that each user contributes her data

only once during the whole FFE process. Thus, we can think of

𝑅-round FFE as splitting the whole datasets to 𝑅 disjoint chunks

and applying 𝜖-RDP mechanism to each of them separately. Par-

allel composition tells us that the overall RDP guaranteed is still

𝜖 . Therefore, privacy accounting can be done as follows. At any

round 𝑟 , the online quantile estimation method introduced above

has RDP guarantees equal to those given in Lemma 2 with 𝑑 set to

1. This is to be composed with the FFE’s RDP at the same round to

obtain the overall DP guarantees at round 𝑟 , which is also the DP

guarantees for the whole FFE process by parallel composition.
6

E MORE EXPERIMENTAL RESULTS
Verifying Theorem1. In Figure 6, we plot the upper bound derived
from Theorem 1 and the true 𝑙2-error of our proposed algorithms

for all four datasets, varying the threshold, 𝐶 . It can be seen that

our theoretical upper bounds indeed upper-bound the true errors

in all cases.

Federated quantile estimation. In Figure 7, we compare algo-

rithms of federated quantile estimation for four datasets. It is clear

that our proposed DHT protocol has over better performance than

the flat-histogram and HH approaches. One can also see that with-

out further prior knowledge on the range of ∥y∥2, our choice of 𝐵
is conservative, as the quantile reaches 1 at ∥y∥2 much smaller than

the chosen 𝐵, i.e., the maximum possible value of ∥y∥2. Even so,

we can still obtain pretty good estimates of the quantile as shown

in the Figure.

To make a more quantitative comparison, we vary the quantile

in the range [0.8, 0.81, ..., 0.99] (which is quantiles of interest in this

work, i.e., Equation 5), and estimate the corresponding DP threshold.

Then, we measure the average "bin error": we calculate the absolute

difference between the estimated one and those obtained from the

un-noised histogram, divide by Δ, the bin size, and take the average

6
Alternatively, we could consider privacy amplification via random subsampling to

enhance the privacy guarantees, instead of performing parallel composition as above,

though this may not be preferable in real-world cross-device situations where user

is not always available to be sampled randomly [43]. For this reason, we opt for the

parallel composition approach in this study.

i.i.d. hetero Foursquare Sentiment140

DHT+DDP 2.0 0.16 2.36 0.86

Flat 4.66 6.84 11.68 2.7

Table 5: Comparison of federated quantile estimation ap-
proaches. Shown are the average bin error of estimated quan-
tiles. Here, the parameters are 𝑑 = 100, 𝜃 ′ = 0.2,𝑚′ = 30, 𝑏 = 6.
See text for other details.

over all the quantile queries (this corresponds to average error

in the unit of bin size) to produce Table 5. We can see that DHT

performs better than the flat approach for all datasets with lower

average bin errors.

Estimated frequencies. In Figure 11, we plot the true per-user

frequencies versus the estimated per-user frequencies with vari-

ous algorithms for the Foursquare dataset with the two-round FFE

protocol. As argued in the main text, the Normalize and Sample
have significantly larger 𝑙2-errors compared to quantile-based meth-

ods. There is no huge visible differences among the quantile-based

methods.

Additional baselines. We consider sampling at most 4, 16,..., 256

items from each user, as a baseline for bounding user contribution.

7
The result is shown in Table 6, outperformed by our proposals in

the main text.

DP mechanisms other than cPBM. Lastly, we briefly study the

performance of using alternatives of cPBM as the underlying DP

mechanisms. We utilize our cPBM instead of e.g. Discrete Gauss-

ian (DDG), as the underlying DP mechanism. The reason is, these

approaches has infinite range of noise, leading to overflows, have

other disadvantages such as increased communication costs at low

privacy budget, as outlined in [20]. Also, as mentioned in Section

3, they have complicated relations between clipping and bias that

cannot be optimized to obtain near-minimal error as done in Theo-

rem 1. To see this, we study one of the state-of-the-art alternative,

Skellam Mixture mechanism [9] by adapting it to our study pre-

sented in Table 2. For example, for i.i.d. dataset (𝑑 = 50), we obtain

an error of 26.9 (ours is 1.16) using their default clipping thresholds.

E.1 Multi-round Federated Frequency
Estimation

Online quantile estimation. We first study how to set the learn-

ing rate 𝜂 and the initial values of 𝐶 . Notice that the geometric

update has an exponential dependence on 𝜂 multiplied by 𝛾 (𝑟 ) −𝛾∗
(Algorithm 7), of which the absolute value in expectation is less

than 1. We set 𝜂 to be of the same order, i.e., 1. For initial 𝐶 , the

initial values do not affect its convergence to 𝐶∗ albeit the speed of

convergence may differ. Setting 𝐶 to 𝑂 (1) achieves reasonably fast

convergence (see Figure 8 for plots). In our full experiments, we set

𝐶 = 𝜂 = 1 without more refined tuning.

Experimental details of MFFE.We consider 𝑛 = 10
5
, both 𝑑 = 50

and 𝑑 = 100. The parameters set for performing Algorithm 1 is

𝑚 = 15. The parameters of performing online quantile estimation is

7
After sampling, we use cPBM to encode the per-user histogram’s Kashin’s represen-

tation. User contribution is bounded as the 𝑙1-norm is bounded after sampling, and

𝑙2-norm, relevant quantity when projecting to the representation space, is always less

than or equal to 𝑙1-norm.
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(a) i.i.d. (b) non-i.i.d.

(c) Foursquare. (d) Sentiment140.

Figure 6: Upper bound of expected 𝑙2-error (blue) versus the true error plotted against 𝐶.

Dataset 𝑑 Sample(4) Sample(16) Sample(64) Sample(256)

i.i.d. 50 28.18 ± 0.0 27.5 ± 0.01 28.29 ± 0.03 28.28 ± 0.1

100 24.55 ± 0.0 24.16 ± 0.01 24.63 ± 0.03 24.66 ± 0.1

hetero 50 28.43 ± 0.0 28.62 ± 0.02 28.63 ± 0.04 28.71 ± 0.12

100 24.72 ± 0.0 24.85 ± 0.01 24.83 ± 0.02 24.89 ± 0.07

Foursquare 50 17.73 ± 0.0 17.48 ± 0.01 17.88 ± 0.05 17.98 ± 0.15

100 18.02 ± 0.0 17.58 ± 0.01 18.13 ± 0.02 18.1 ± 0.21

Sentiment140 50 1.32 ± 0.0 1.35 ± 0.02 1.44 ± 0.03 1.98 ± 0.06

100 1.38 ± 0.0 1.39 ± 0.01 1.49 ± 0.03 2.02 ± 0.09

Table 6: 𝑙2-errors of two-round federated frequency estimation. Mean (standard deviation) over 5 runs.

set to be 𝜃 ′ = 𝜃 and𝑚′ = 15. Thus, we are paying a privacy of 1/𝑑-
factor of those used for frequency estimation on online quantile

estimation. The total privacy spent (under parallel composition

assumption) is 𝜖 = 7.5 (10.7) for 𝑑 = 50 (𝑑 = 100) and 𝛿 = 10
−5
.

Table 3 shows the full results. We see that our method, private

𝐶 , has error very close to the optimal 𝐶∗, and outperforms other

baselines. Comparison with 𝐶
small

also validates Corollary 1. In

Figure 10, we show that similar results hold for larger 𝑑’s.

TFFE versus MFFE. We discuss in what situation a practitioner

should deploy TFFE/MFFE when both options are viable in practice.

The answer is one should always perform TFFE. There are several

reasons for this. (a) Security-wise, TFFE is preferable as running

SecAgg fewer times reduces privacy leakage risks, e.g., eavesdrop-

ping. (b) Algorithm-wise, MFFE makes imprecise frequency estima-

tion in early rounds of aggregation when the estimated threshold

has not converged yet. (c) In terms of privacy-utility trade-offs,

TFFE is also favorable. Recall that the RDP is proportional to the

inverse of the number of aggregated users in a round. The TFFE

benefits maximally privacy-wise from aggregating the whole pop-

ulation, while the MFFE does not receive similar boost of privacy

due to smaller per-round number of users.

To illustrate this, we conduct the following experiment. For

MFFE, we fix 𝑁 = 1000 and other parameters set to be equal to the

MFFE experiments presented previously, and vary the total popula-

tion, 𝑛 (and hence the number of rounds, 𝑅). Then, we measure the

𝑙2-error. For TFFE, we vary 𝑛 and adjust𝑚,𝑚′ such that the both

MFFE and TFFE are compared under the same privacy budget. In

addition, we consider the communication cost of both protocols. Se-

cure multi-party computation of [10] requires𝑂 (log𝑁 ) (𝑂 (log𝑛))
communication overhead per user, in addition to the communi-

cation overhead of the MFFE (TFFE) protocol for communicating

user vectors. We calculate the TFFE/MFFE ratio of communication

overhead for different values of 𝑛.

Figure 12a show the results, where TFFE is always better than

MFFE. However, the communication overhead of TFFE also in-

creases with 𝑛, due to larger number of bits sent,𝑚,𝑚′ (to com-

pensate the increase of 𝜖 at larger values of 𝑛). To see how TFFE
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Figure 7: Federated quantile estimation.

(a) i.i.d. (b) non-i.i.d.

(c) Foursquare. (d) Sentiment140.

Figure 8: Evolution of 𝐶 for various values of initial 𝐶 (learning rate set to 1).

and MFFE peforms under the same communication constraints, we

perform another experiment with TFFE, adjusting𝑚 = 15,𝑚′ = 3

such that both TFFE and MFFE send roughly the same amount of

bits. From Figure 12b, we can see that TFFE and MFFE perform

similarly. Additionally, we note that TFFE requires smaller privacy

budget to achieve the same utility as MFFE (MFFE reqiuires 𝜖 = 7.5),

demonstrating better privacy-utility trade-offs. In summary, we rec-

ommend the deployment of TFFE whenever the situation allows.
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Figure 9: Evolution of 𝐶 for various values of learning rate (initial 𝐶 set to 1).

(a) Foursquare. (b) Sentiment140.

Figure 10: Comparisons of various algorithms varying 𝑑 for multi-round FFE.
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Figure 11: Average per-user frequencies for Foursquare dataset.
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Figure 12: Comparing two-round/multi-round federated frequency estimation, fixing (a) privacy budget, (b) communication
cost. See text for details.
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