Network Shuffling **Privacy amplification via Random Walks**

Seng Pei Liew with Tsubasa Takahashi, Shun Takagi*, Fumiyuki Kato*, Yang Cao*, Masatoshi Yoshikawa*

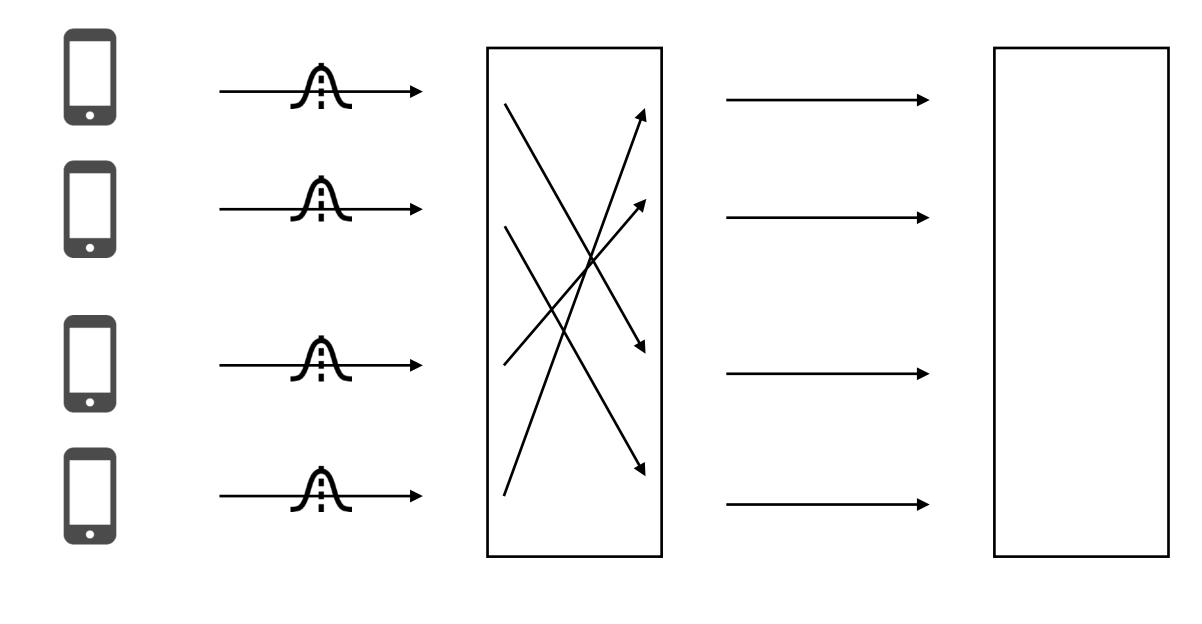
LINE Corporation, Japan * Kyoto University, Japan

SIGMOD 2022

LINE

How to anonymize data to enhance differential privacy?

- User wants to send (randomized) data to the server anonymously (**Shuffle model**) \bullet
- Anonymization is typically assumed to be performed with a centralized **shuffler**



User

Shuffler

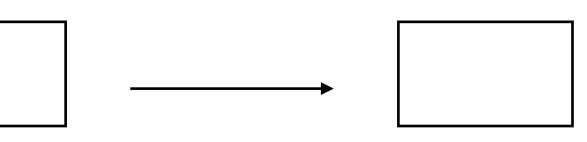
It is shown that anonymization leads to privacy amplification in terms of differential privacy

Server

Trusted shuffler implementation

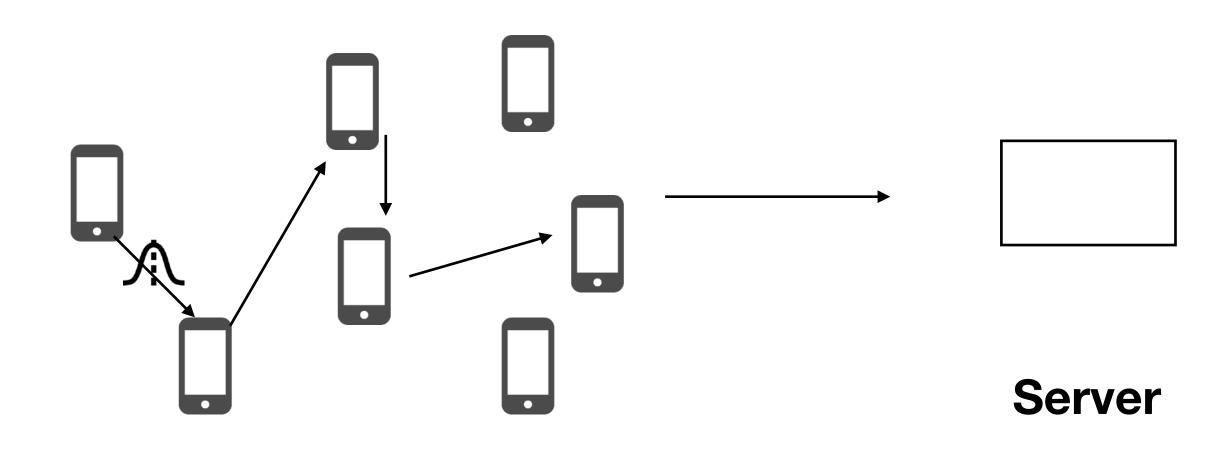
Prochlo (TEE)

- single-point failure



- Vulnerable to side-channel attacks

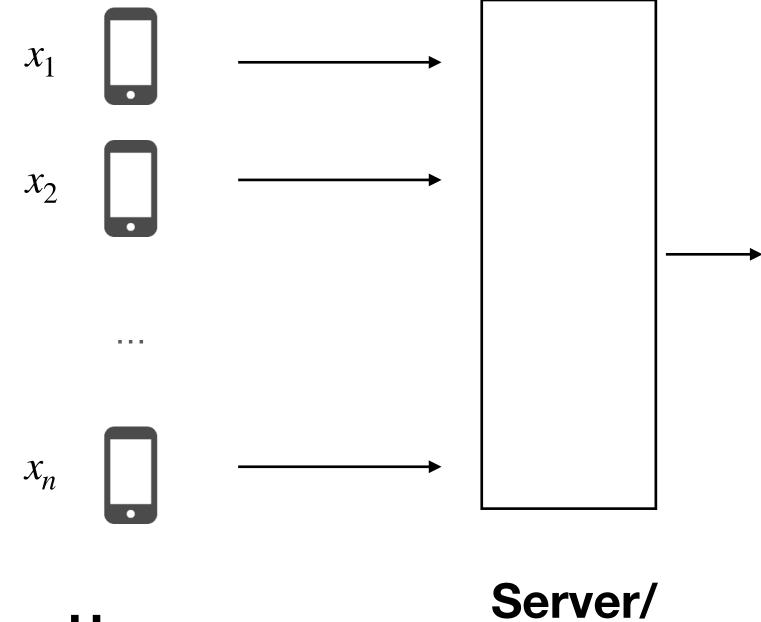
Network shuffling (our proposal)



- No centralized entity required

We give analytical results showing that privacy amplification is achievable under this decentralized setting

Distributed Analytics



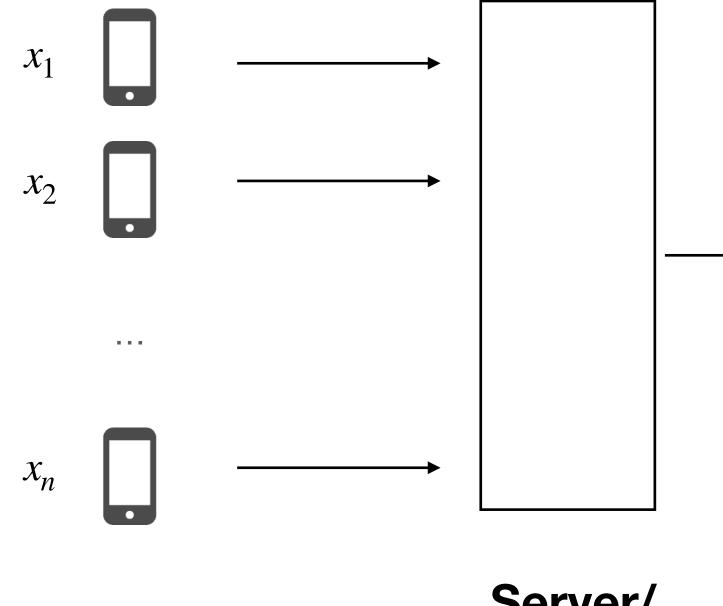
User

Server/ Analyzer

Estimate

 $f(x_1,\ldots,x_n)$

Differential Privacy



User

Server/ Analyzer

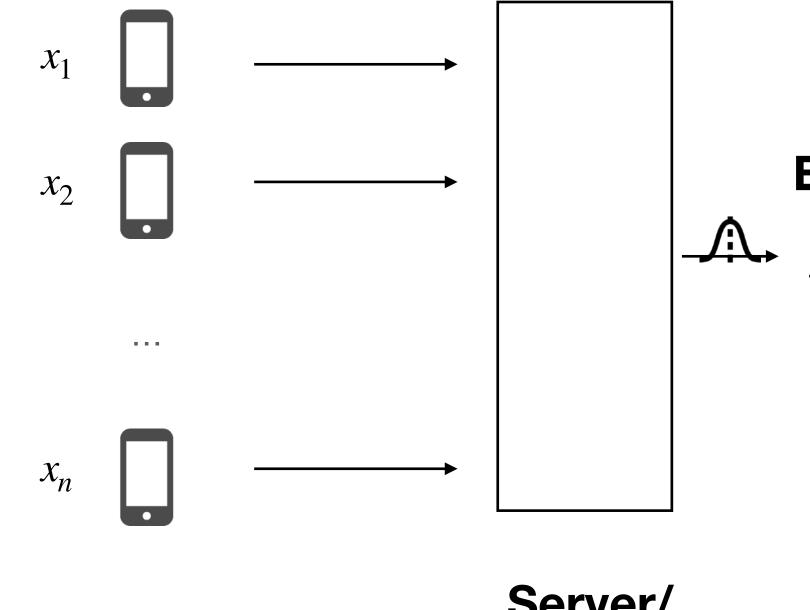
Estimate

 $f(x_1,\ldots,x_n)$

 (ϵ, δ) -Differential Privacy

• "An algorithm is differential private if changing a single record does not alter its output distribution by much." [DN03, DMNS06]

Differential Privacy (central)



User

Server/ Analyzer Estimate

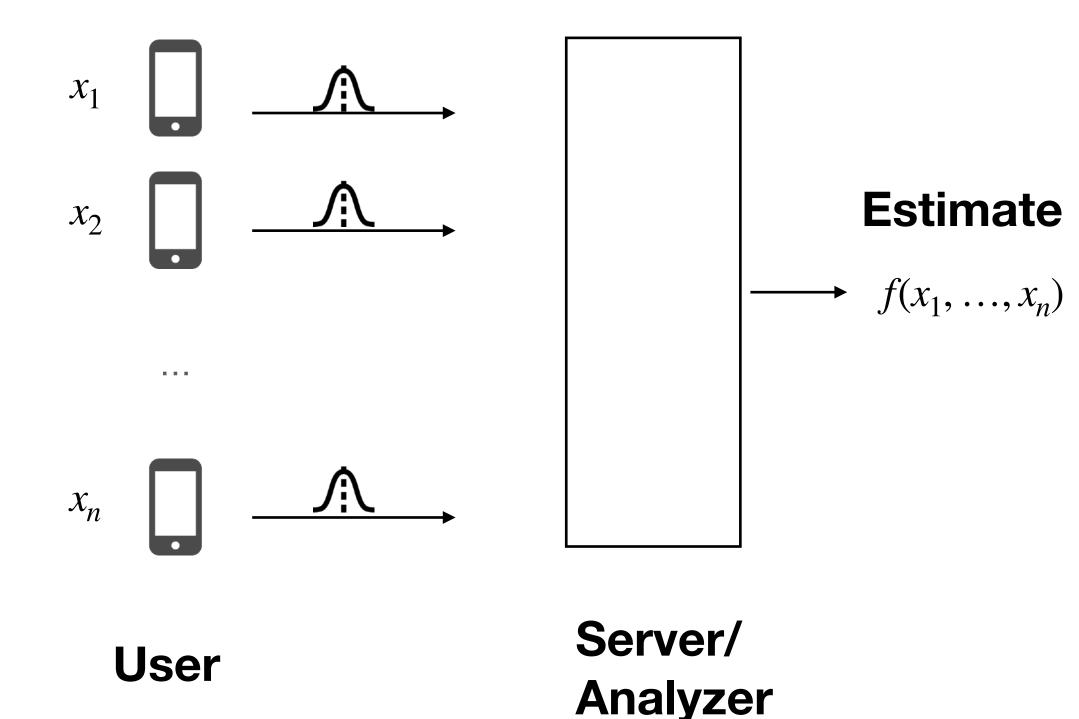
 $f(x_1,\ldots,x_n)$

 (ϵ, δ) -Differential Privacy

• "An algorithm is differential private if changing a single record does not alter its output distribution by much." [DN03, DMNS06]

- Pro: Utility is high (comparably small amount of noise is required to maintain indistinguishability)
- Con: One must trust the server (for not leaking privacy)

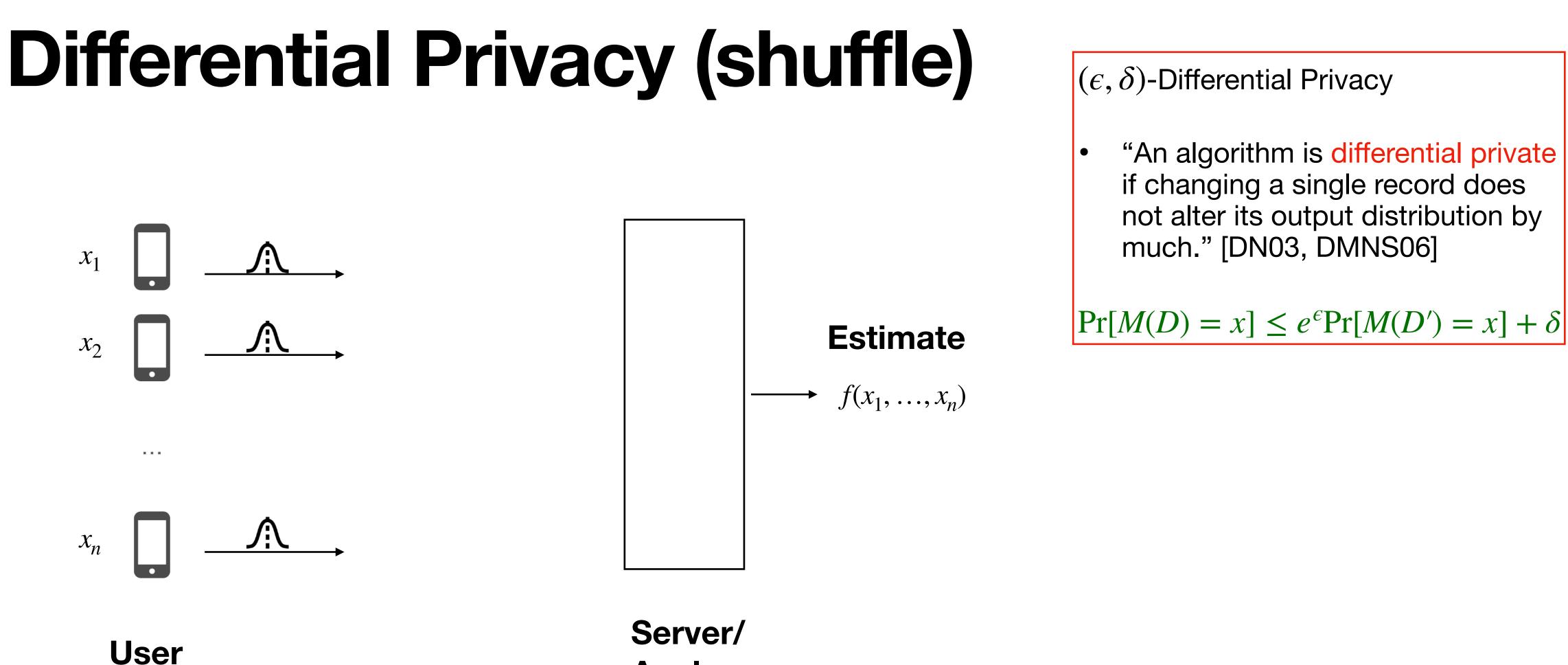
Differential Privacy (local)



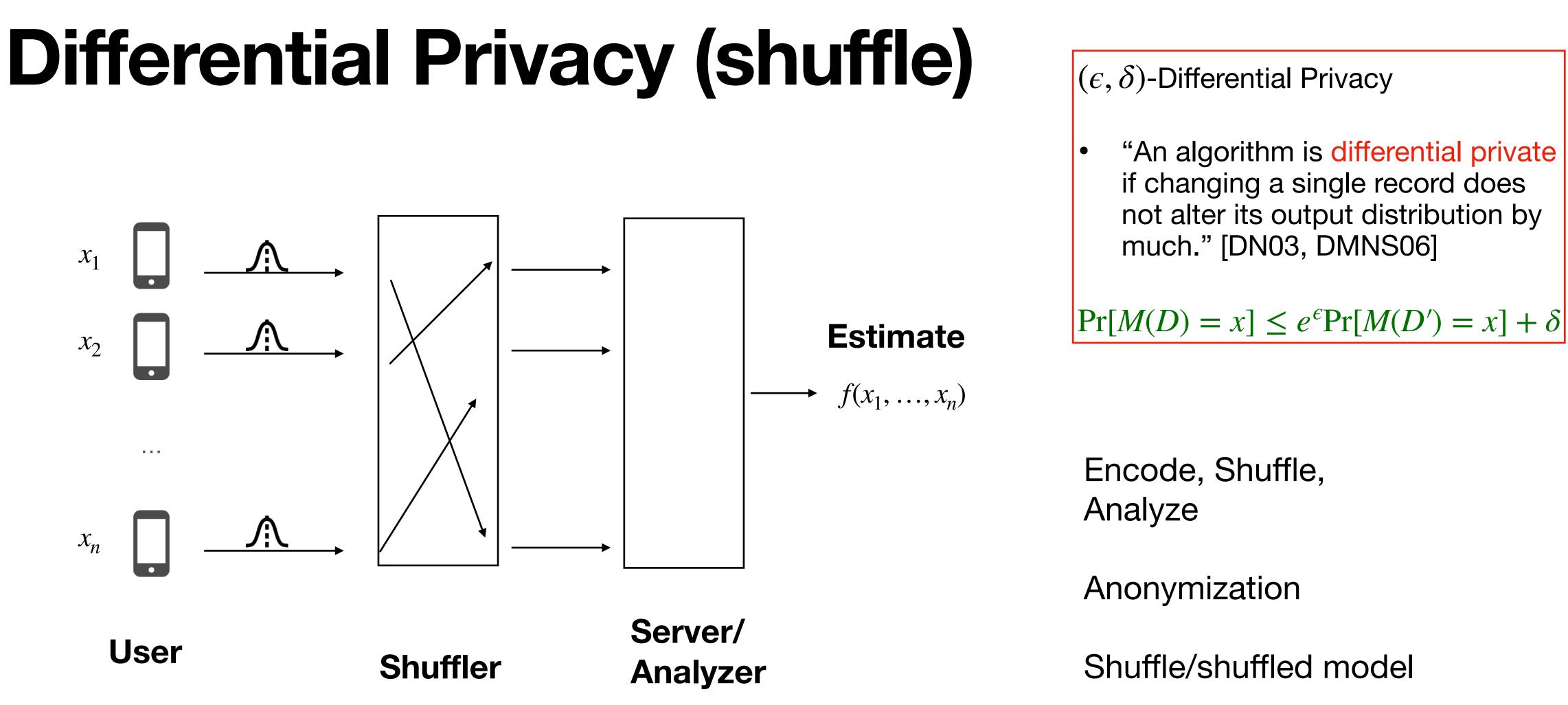
 (ϵ, δ) -Differential Privacy

"An algorithm is differential private if changing a single record does not alter its output distribution by much." [DN03, DMNS06]

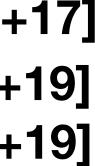
- Pro: No trust assumption on aggregator ulletis assumed
- Con: Low utility (Noise required to maintain indistinguishability is relatively high)

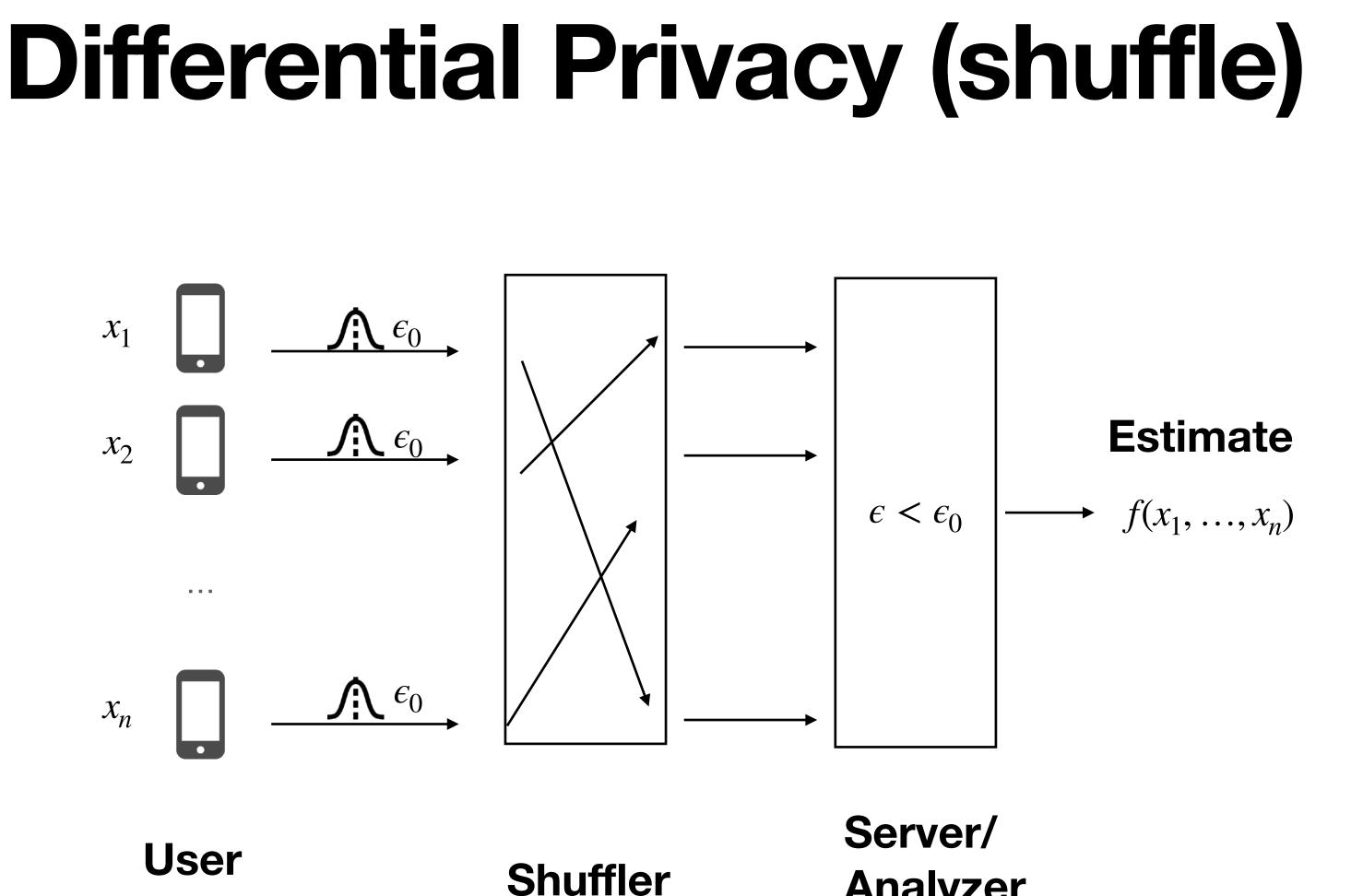


Analyzer



[BEM+17] [CSU+19] [EFM+19]



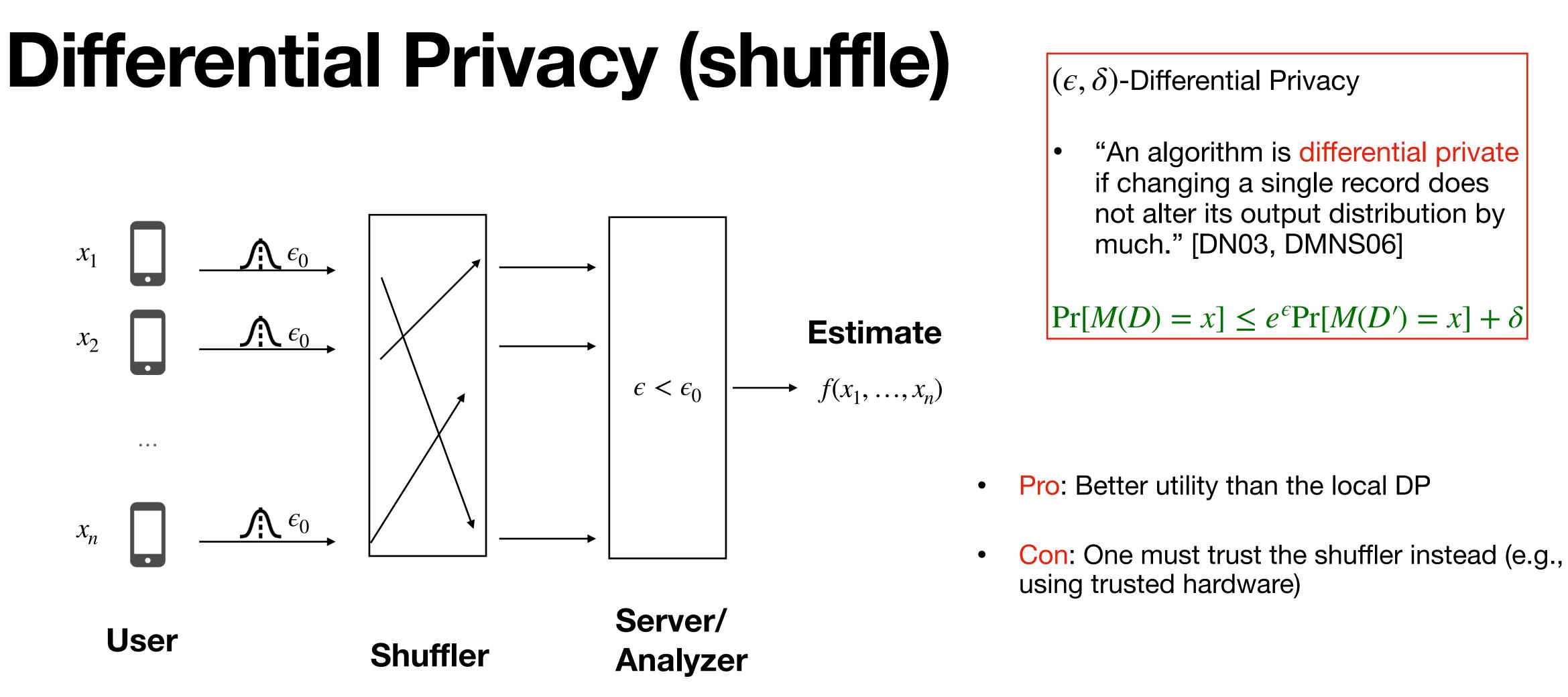


Analyzer

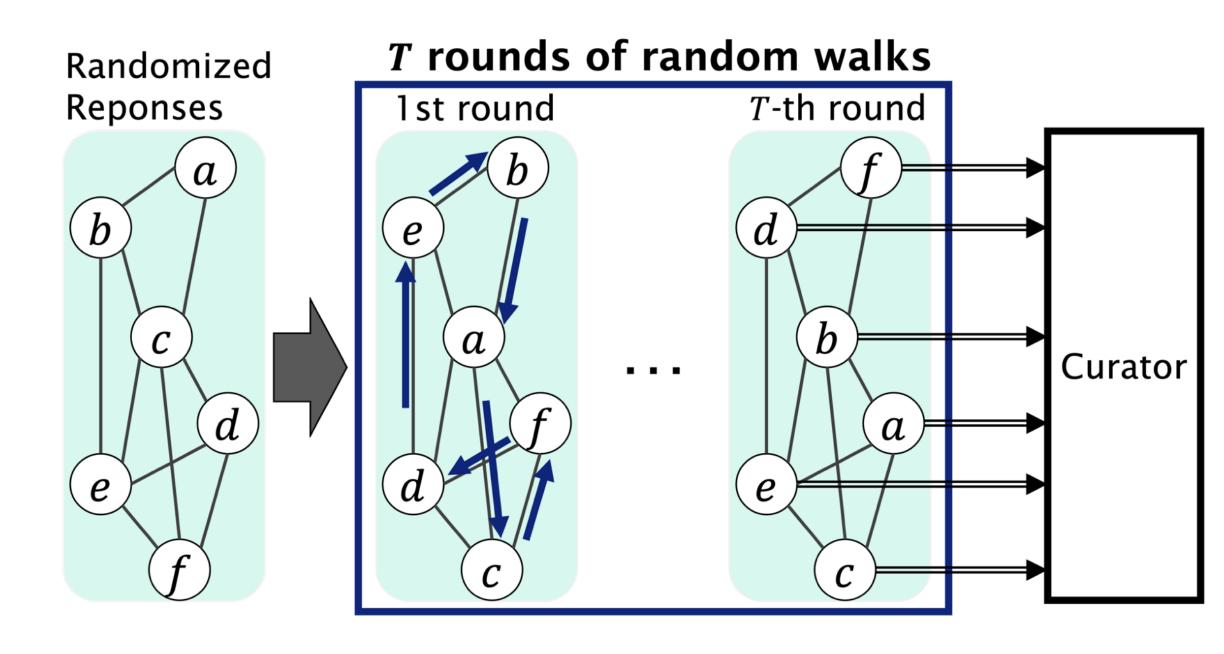
 (ϵ, δ) -Differential Privacy

"An algorithm is differential private if changing a single record does not alter its output distribution by much." [DN03, DMNS06]

- The shuffler removes any identifier (identifying the user sending the data). Also known as uniform shuffling.
- **Privacy amplification** is said to occur lacksquarewhen $\epsilon < \epsilon_0$ (ϵ being the overall, central DP, ϵ_0 being the individual LDP)

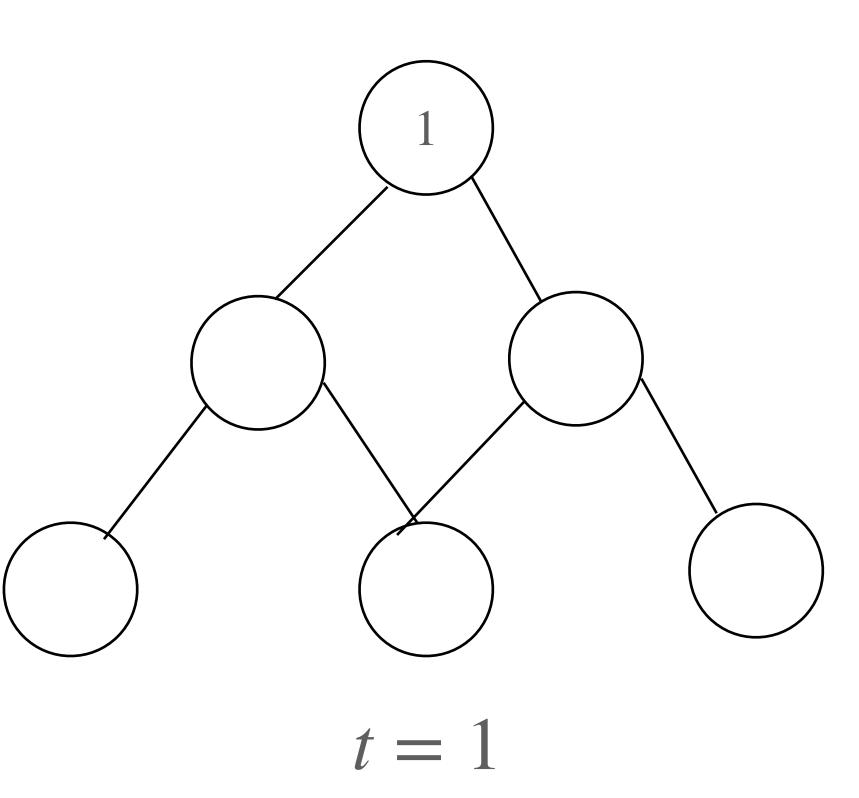


Proposal (network shuffling)



- We would like to achieve the same shuffling effect *without* using a centralized shuffler.
- The main idea is to exchange the user output within each other on a network before sending the (exchanged) data to the server
- The server receive messages from the users **without knowing the origin of the messages**, thus achieving anonymization.
- Our proposal is motivated by messaging apps (LINE, Facebook Messenger) where users exchange messages on a social network

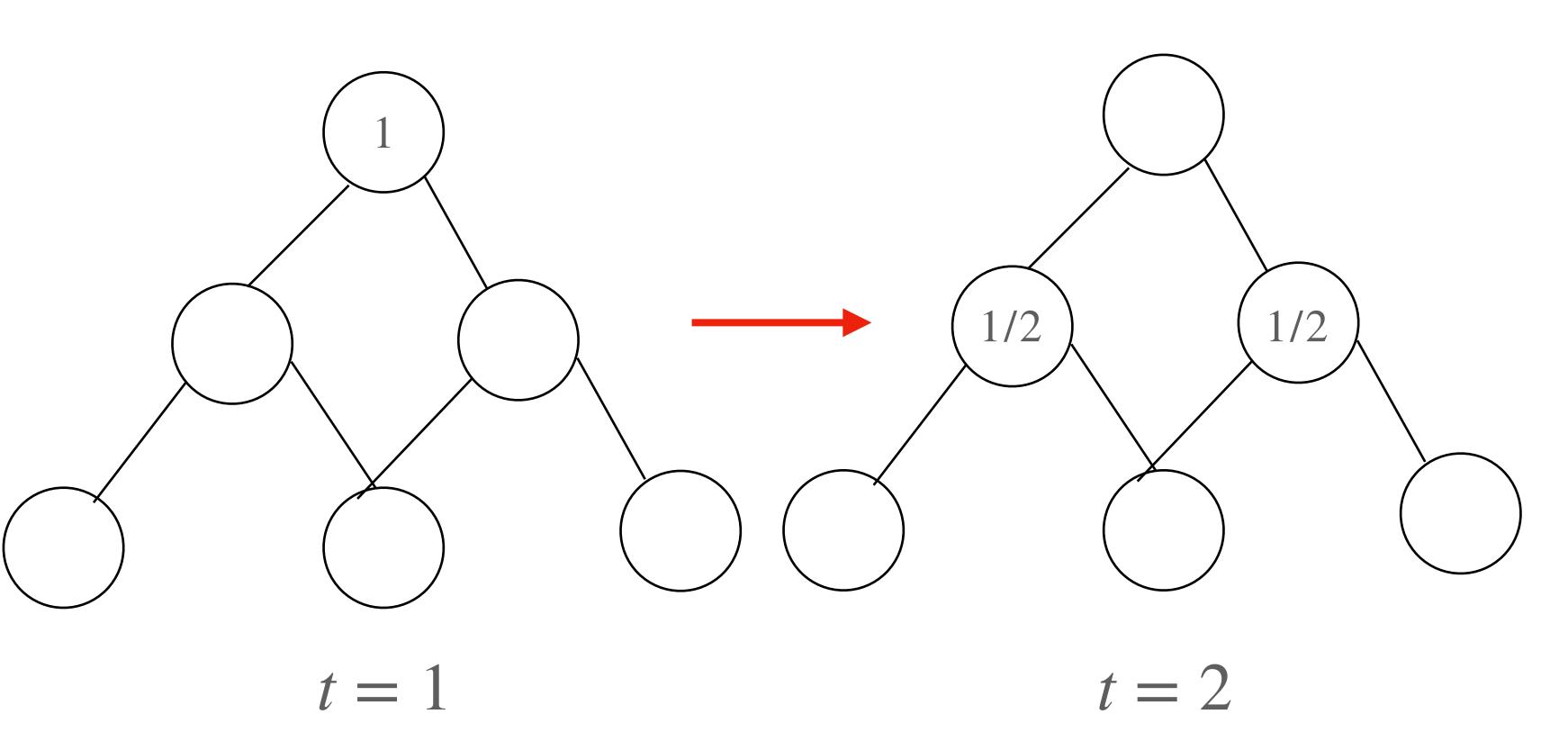
Modeling network shuffling as a random walk on graphs



- ulletneighbors.
- This corresponds to the well-studied topic of random walk on graphs. \bullet

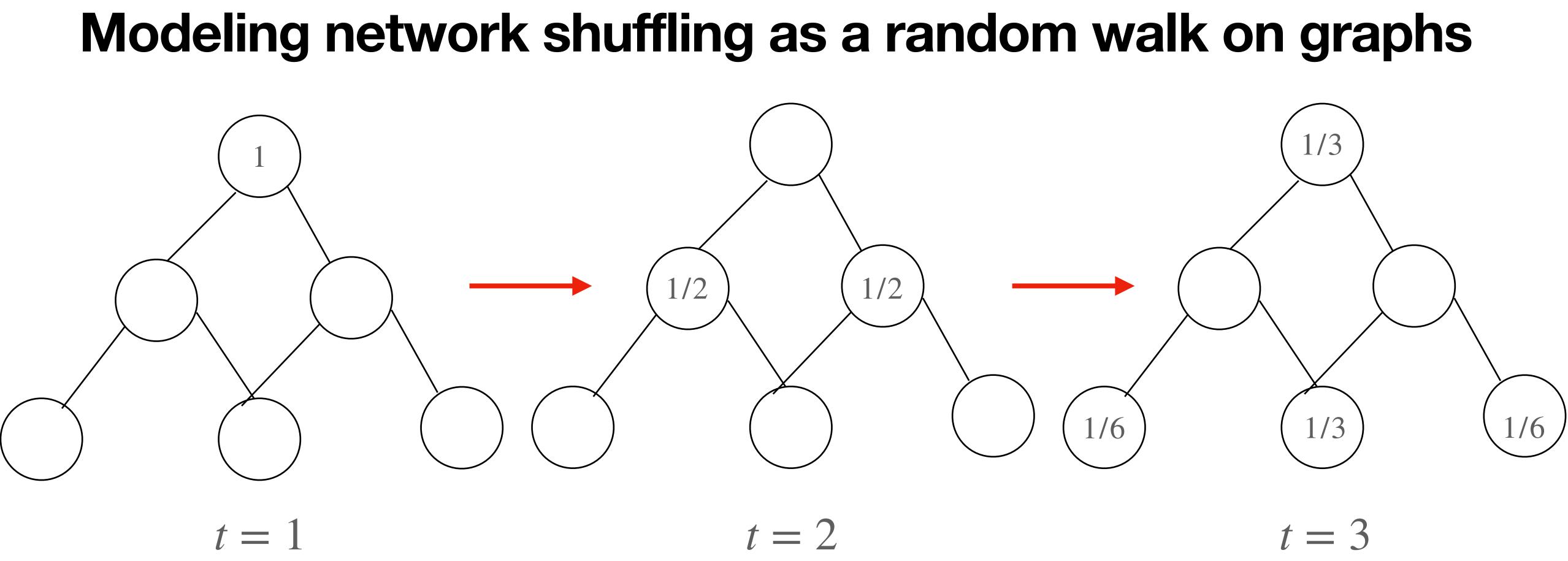
Assume a fixed communication network/graph, and that all users exchange messages randomly and uniformly with

Modeling network shuffling as a random walk on graphs



- ulletneighbors.
- This corresponds to the well-studied topic of random walk on graphs. \bullet

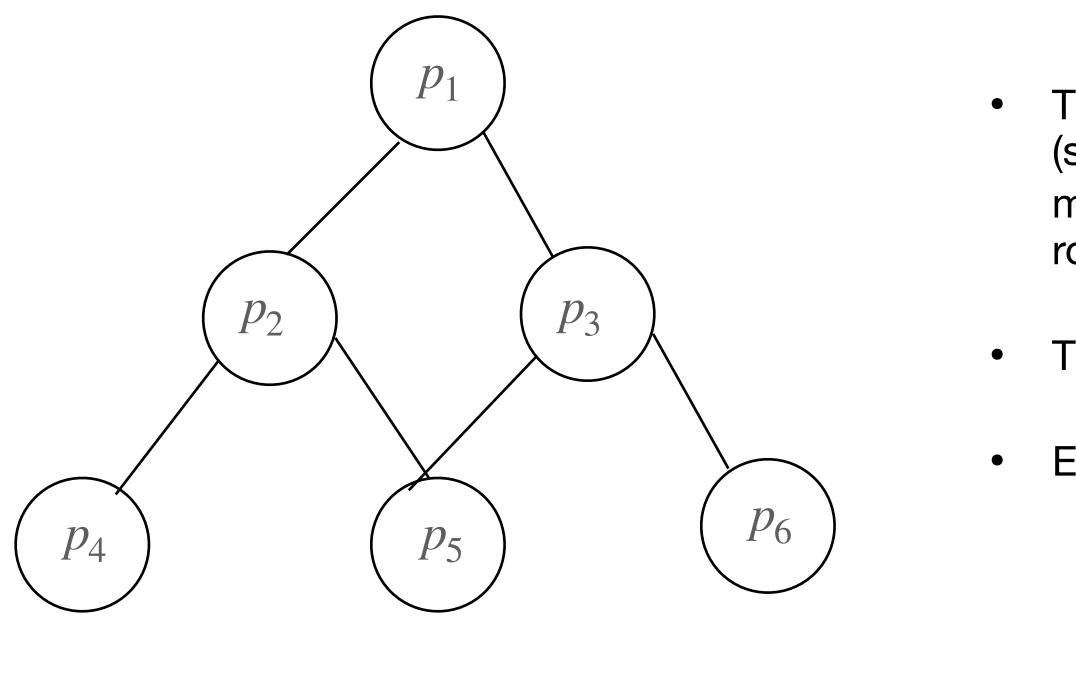
Assume a fixed communication network/graph, and that all users exchange messages randomly and uniformly with



- ulletneighbors.
- This corresponds to the well-studied topic of random walk on graphs. \bullet

Assume a fixed communication network/graph, and that all users exchange messages randomly and uniformly with

The adversary view



t = T

The privacy parameters are calculated based on the adversary (server) knowledge of the probability of a certain node receiving the message of a target user given t = T (number of communication rounds).

This is different from uniform shuffling, where the shuffling is uniform.

Each user can also receive more than one message at one time.

Privacy amplification theorem

- Assume that users send all messages to the server ("all" protocol)
- The proof is based on the reduction of shuffling to swapping [EFM+19]

THEOREM 5.3 ("ALL" PROTOCOL, STATIONARY DISTRIBUTION). Let \mathcal{A}_{ldp} be a ε_0 -local randomizer. Let $\mathcal{A}_{all} : \mathcal{D}^n \to \mathcal{S}^{(1)} \times \cdots \times \mathcal{S}^{(n)}$ be the protocol as shown in Algorithm 1 sending all reports to the server. Then, \mathcal{A}_{all} satisfies ($\varepsilon, \delta + \delta_2$)-DP, with

$$\varepsilon = \frac{(e^{\varepsilon_0} - 1)^2 e^{4\varepsilon_0} \varepsilon_1^2}{2} + \varepsilon_1 \sqrt{2(e^{\varepsilon_0} - 1)^2 e^{4\varepsilon_0} \log \frac{1}{\delta}},$$

$$\sqrt{\frac{\log(1/\delta_2)}{n}}$$

(8)

- Privacy amplification depends on network structure.
- How do we calculate this quantity?

Stationary distribution of random walk on graphs

- To calculate the probabilities, it is convenient to use the notion stationary distribution. lacksquare

Fact 1: A random walk on graph G converges to a stationary distribution (*ergodicity*) if and only if G is non-bipartite and connected

Fact 2: The mixing time (no. of rounds required to achieve a certain degree of homogeneity) is $\sim O(\log n)$

parameter.

Stationary distribution: a distribution π of a random walk such that for all initial distributions p_0 , it converges to $\lim \pi$ $t \rightarrow \infty$

At any time step, we are able to show that $\sum P_i^{G^2} \leq \sum \pi_i^{G^2} + (1 - \alpha)^{2t}$, where α is the spectral gap (roughly $i \in [n]$ $i \in [n]$ speaking, 1 minus the second eigenvalue of the transition matrix) to provide an upper bound (worst case) on the privacy

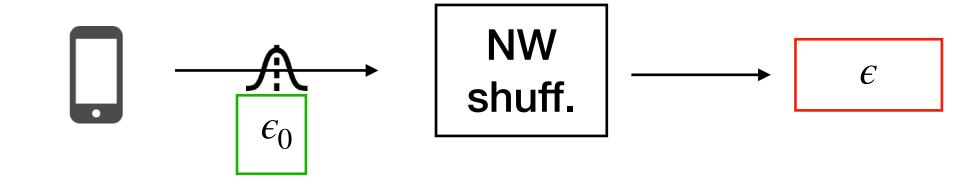
Privacy amplification theorem

- Assume that users send all messages to the server ("all" protocol) \bullet
- The proof is based on the reduction of shuffling to swapping

THEOREM 5.3 ("ALL" PROTOCOL, STATIONARY DISTRIBUTION). Let \mathcal{A}_{ldp} be a ε_0 -local randomizer. Let $\mathcal{A}_{all} : \mathcal{D}^n \to \mathcal{S}^{(1)} \times \cdots \times \mathcal{S}^{(n)}$ be the protocol as shown in Algorithm 1 sending all reports to the server. Then, \mathcal{A}_{all} satisfies ($\varepsilon, \delta + \delta_2$)-DP, with

$$\varepsilon = \frac{(e^{\varepsilon_0} - 1)^2 e^{4\varepsilon_0} \varepsilon_1^2}{2} + \varepsilon_1 \sqrt{2(e^{\varepsilon_0} - 1)^2 e^{4\varepsilon_0} \log \frac{1}{\delta}}, \qquad (8)$$

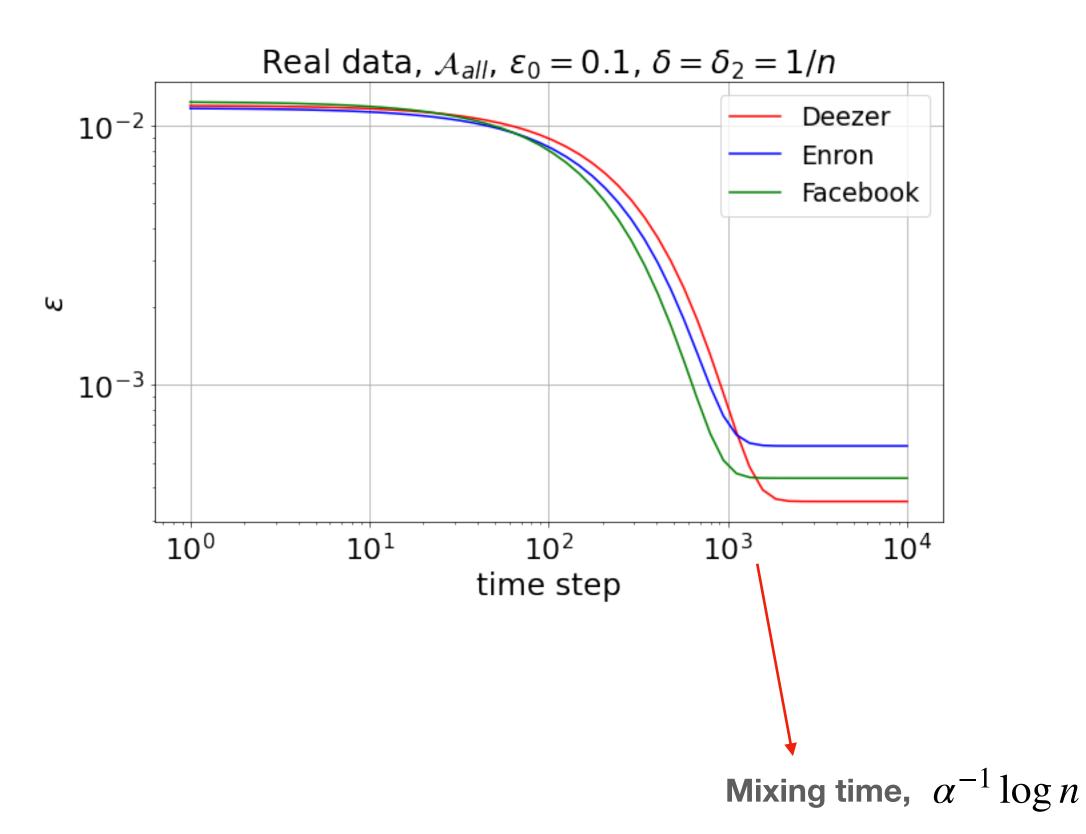
 $\varepsilon_1 = \sqrt{\left(1 - \frac{1}{n}\right)} \sum_{i} P_i^{G^2}$



$$+\sqrt{\frac{\log(1/\delta_2)}{n}}, \sum_{i \in [n]} P_i^{G^2} \le \sum_{i \in [n]} \pi_i^{G^2} + (1-\alpha)^{2t}$$

How the privacy guarantees change with time

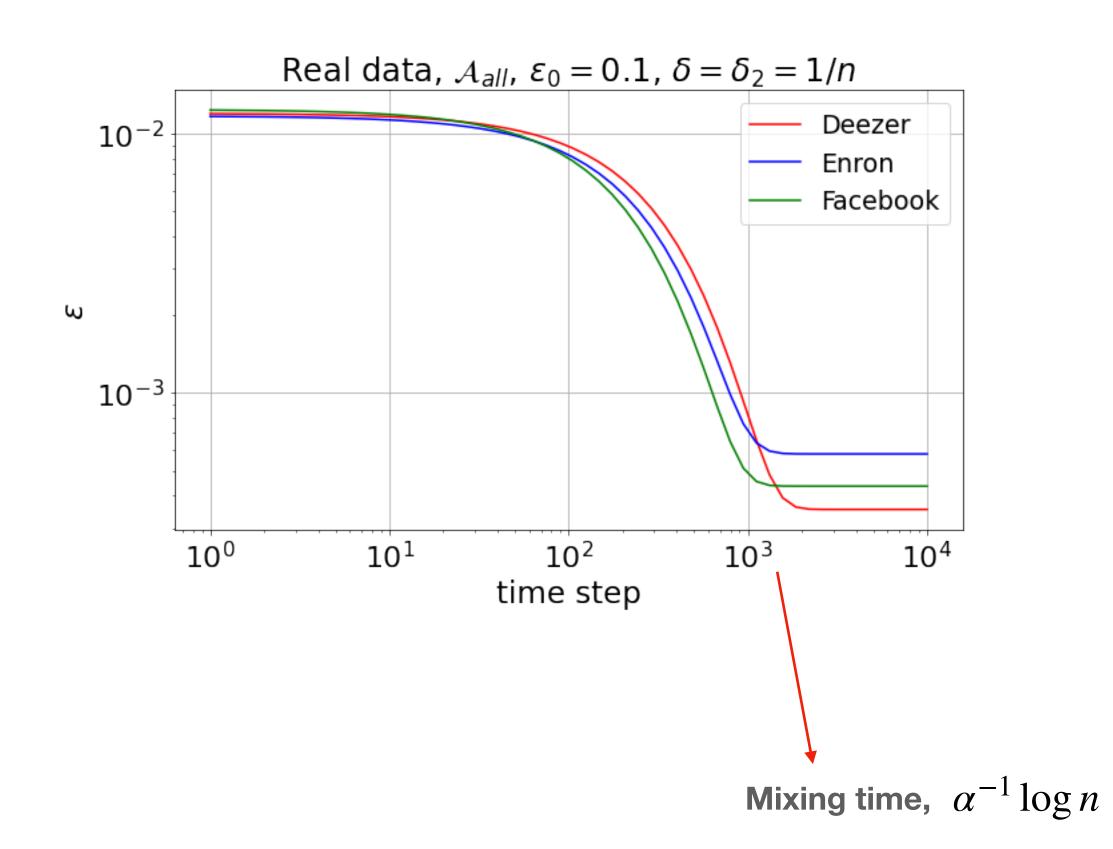
to guess the origin of data



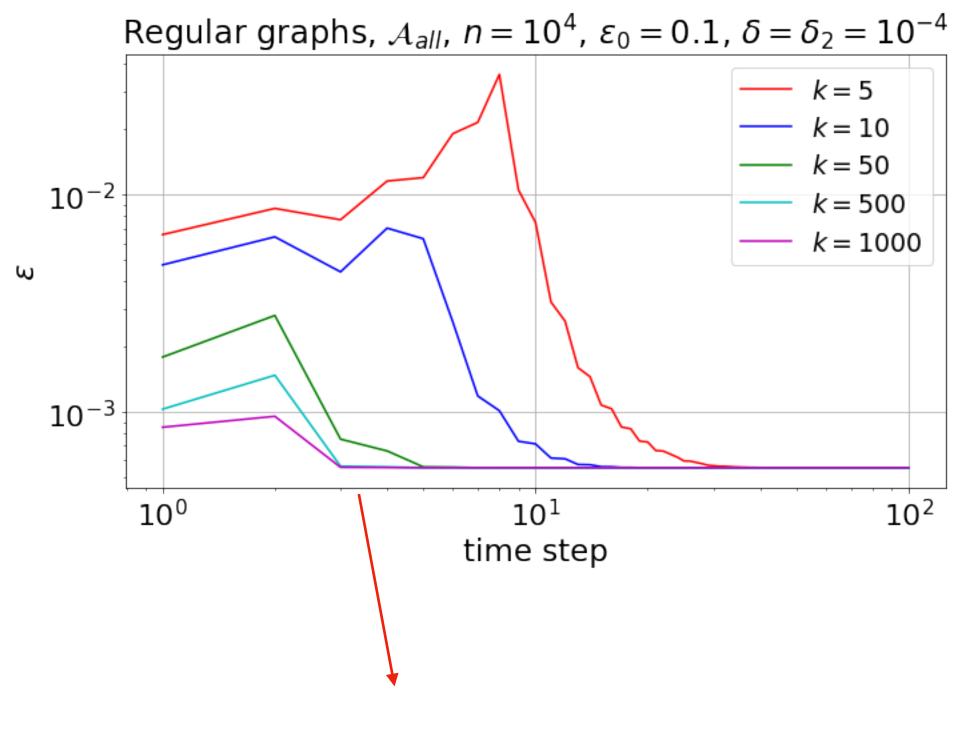
Intuitively, the probability distribution "spreads out" with respect to time, making it harder for the adversary

How the privacy guarantees change with time

 Intuitively, the probability distribution "spreads o to guess the origin of data

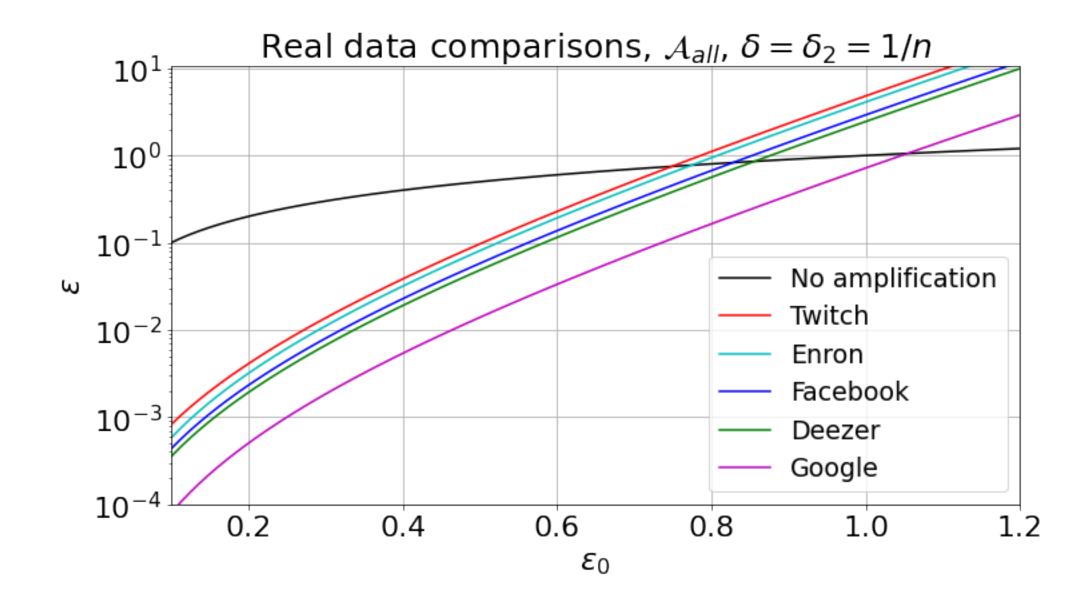


Intuitively, the probability distribution "spreads out" with respect to time, making it harder for the adversary



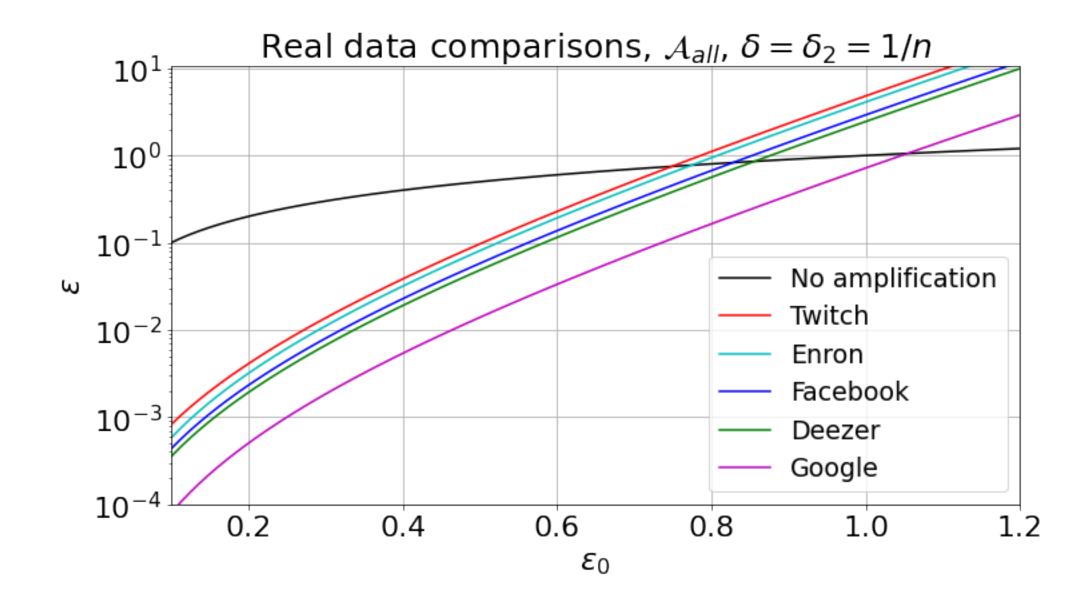
Tracing a regular graph

Amplification (ϵ_0 vs ϵ)



- Larger population leads to more significant amplification (Google: 856k vs Twitch: 9k)
- Amplification does not occur at large ϵ_0

Amplification (ϵ_0 vs ϵ)



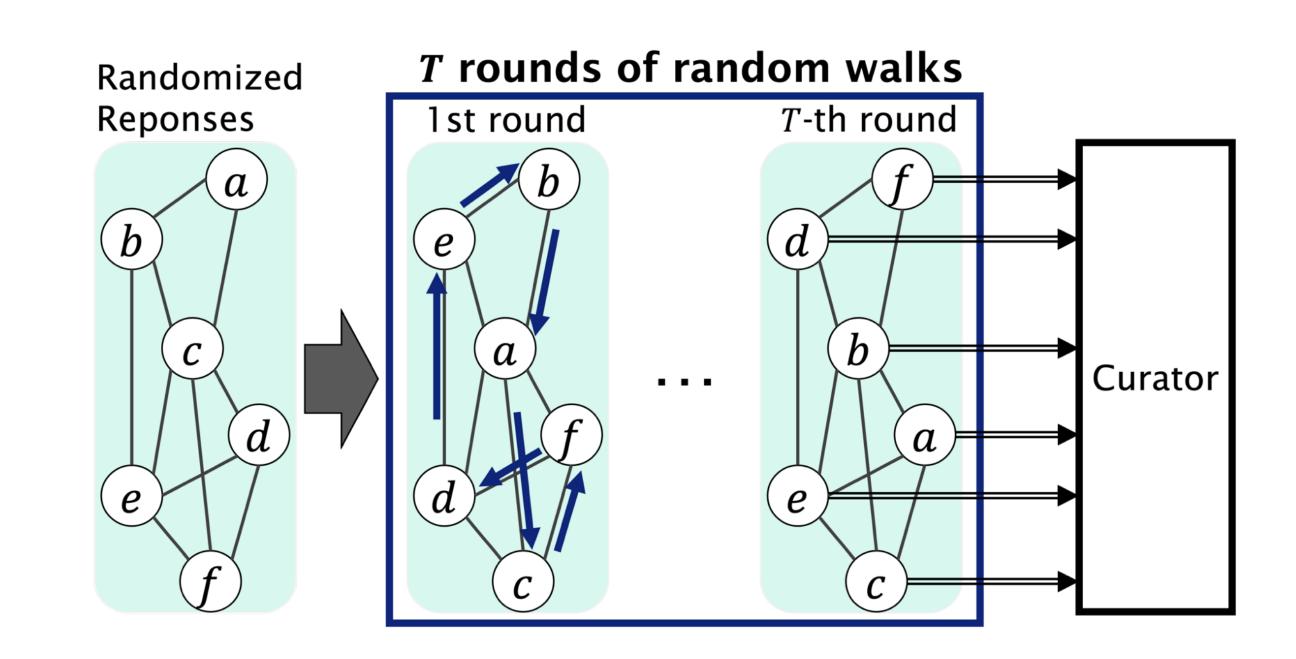
- Larger population leads to more significant amplification (Google: 856k vs Twitch: 9k)
- Amplification does not occur at large ϵ_0

Mechanism	Privacy Amplification
No amplification [18]	ε_0
Uniform subsampling [1, 33]	$O(e^{\varepsilon_0}/\sqrt{n})$
Uniform shuffling [22]	$O(e^{3\varepsilon_0}/\sqrt{n})$
Uniform shuffling (w/ clones) [25]	$O(e^{0.5\varepsilon_0}/\sqrt{n})$
Network shuffling (ours)	$O(e^{1.5\varepsilon_0}/\sqrt{n})$

- Similar rate of amplification (weaker exponential dependence)
- Could be improved with more advanced techniques

Other topics not discussed here

- "Single" protocol where user sends only one message: stronger privacy guarantees
- Tighter privacy bound for *k*-regular graph
- Private mean estimation as an application
- Threat modeling
- Please check our paper or arXiv:2204.03919

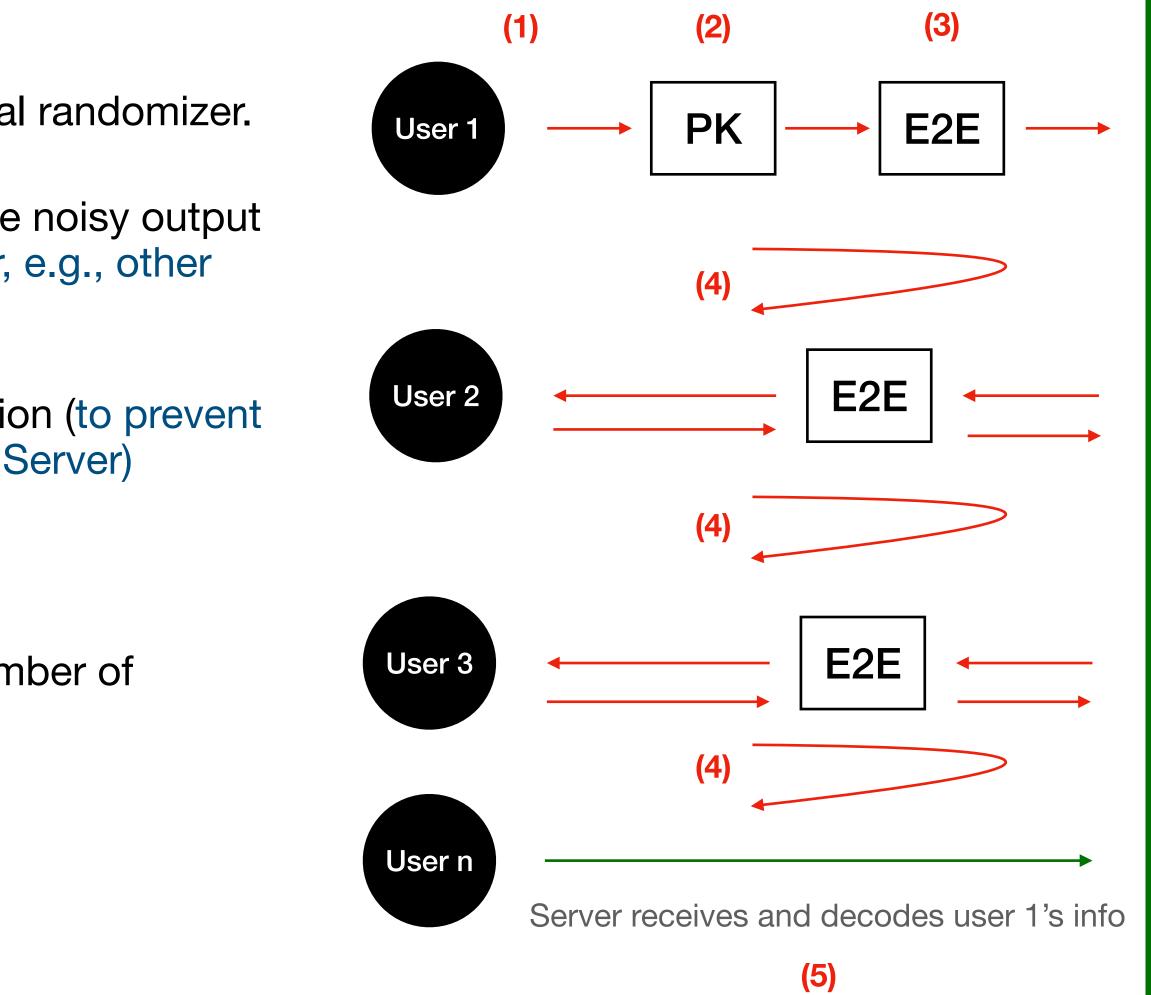


APPENDICES

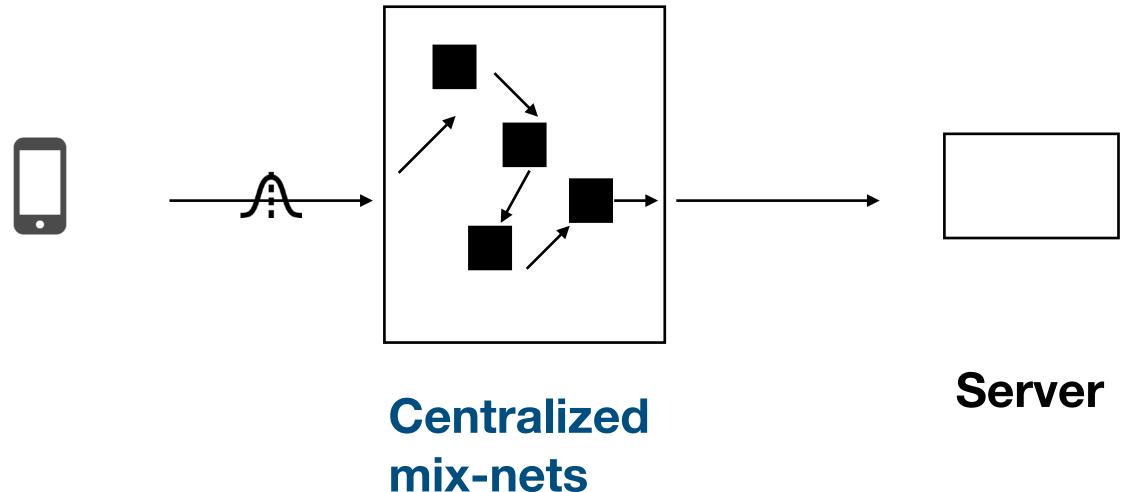
LINE

Protocol

- 1. For each user/client, add noise to the output using local randomizer.
- 2. Use a public key (PK) provided by Server to encrypt the noisy output (to prevent eavesdropping by parties other than Server, e.g., other clients).
- 3. Communicate with other users via end-to-end encryption (to prevent eavesdropping by parties other than the receiver, e.g., Server)
- 4. Send to a random user the noisy output via E2E.
- 5. Send noisy output to server after a pre-determined number of communication rounds



Trusted shuffler implementations



- n^2 communication complexity due to cover traffic - still need to trust extra centralized entities