
Network Shuffling
Privacy amplification via Random Walks
SIGMOD 2022

Seng Pei Liew
with Tsubasa Takahashi , Shun Takagi*, Fumiyuki Kato*, Yang Cao*, Masatoshi Yoshikawa*

LINE Corporation, Japan
* Kyoto University, Japan

How to anonymize data to enhance differential privacy?

• User wants to send (randomized) data to the server anonymously (Shuffle model)

• Anonymization is typically assumed to be performed with a centralized shuffler

Shuffler Server User

It is shown that
anonymization leads

to privacy
amplification in terms
of differential privacy

Trusted shuffler implementation

Prochlo
(TEE)

Server

- Vulnerable to side-channel attacks
- single-point failure

[BEM+17]

Network shuffling (our proposal)

Server

- No centralized entity required

We give analytical results showing that privacy
amplification is achievable under this decentralized

setting

Distributed Analytics

Server/
Analyzer User

x1

x2

xn

f(x1, …, xn)

…

Estimate

Differential Privacy

Server/
Analyzer User

x1

x2

xn

f(x1, …, xn)

…

Estimate

-Differential Privacy

• “An algorithm is differential private
if changing a single record does
not alter its output distribution by
much.” [DN03, DMNS06]

(ϵ, δ)

Pr[M(D) = x] ≤ eϵPr[M(D′) = x] + δ

Differential Privacy (central)

Server/
Analyzer User

x1

x2

xn

f(x1, …, xn)

…

Estimate

-Differential Privacy

• “An algorithm is differential private
if changing a single record does
not alter its output distribution by
much.” [DN03, DMNS06]

(ϵ, δ)

Pr[M(D) = x] ≤ eϵPr[M(D′) = x] + δ

• Pro: Utility is high (comparably small amount
of noise is required to maintain
indistinguishability)

• Con: One must trust the server (for not
leaking privacy)

Differential Privacy (local)

Server/
Analyzer User

x1

x2

xn

f(x1, …, xn)

…

Estimate

-Differential Privacy

• “An algorithm is differential private
if changing a single record does
not alter its output distribution by
much.” [DN03, DMNS06]

(ϵ, δ)

Pr[M(D) = x] ≤ eϵPr[M(D′) = x] + δ

• Pro: No trust assumption on aggregator
is assumed

• Con: Low utility (Noise required to
maintain indistinguishability is relatively
high)

Differential Privacy (shuffle)

Server/
Analyzer User

x1

x2

xn

f(x1, …, xn)

…

Estimate

-Differential Privacy

• “An algorithm is differential private
if changing a single record does
not alter its output distribution by
much.” [DN03, DMNS06]

(ϵ, δ)

Pr[M(D) = x] ≤ eϵPr[M(D′) = x] + δ

Differential Privacy (shuffle)

Server/
Analyzer User

x1

x2

xn

f(x1, …, xn)

…

Estimate

-Differential Privacy

• “An algorithm is differential private
if changing a single record does
not alter its output distribution by
much.” [DN03, DMNS06]

(ϵ, δ)

Pr[M(D) = x] ≤ eϵPr[M(D′) = x] + δ

Shuffler

Encode, Shuffle,
Analyze

Anonymization

Shuffle/shuffled model

[CSU+19]
[EFM+19]

[BEM+17]

Differential Privacy (shuffle)

Server/
Analyzer User

x1

x2

xn

f(x1, …, xn)

…

Estimate

-Differential Privacy

• “An algorithm is differential private
if changing a single record does
not alter its output distribution by
much.” [DN03, DMNS06]

(ϵ, δ)

Pr[M(D) = x] ≤ eϵPr[M(D′) = x] + δ

Shuffler

• The shuffler removes any identifier
(identifying the user sending the data).
Also known as uniform shuffling.

• Privacy amplification is said to occur
when (being the overall,
central DP, being the individual
LDP)

ϵ < ϵ0 ϵ
ϵ0

ϵ0

ϵ0

ϵ0

ϵ < ϵ0

Differential Privacy (shuffle)

Server/
Analyzer User

x1

x2

xn

f(x1, …, xn)

…

Estimate

-Differential Privacy

• “An algorithm is differential private
if changing a single record does
not alter its output distribution by
much.” [DN03, DMNS06]

(ϵ, δ)

Pr[M(D) = x] ≤ eϵPr[M(D′) = x] + δ

Shuffler

ϵ0

ϵ0

ϵ0

• Pro: Better utility than the local DP

• Con: One must trust the shuffler instead (e.g.,
using trusted hardware)

ϵ < ϵ0

Proposal (network shuffling)

• We would like to achieve the same shuffling effect without
using a centralized shuffler.

• The main idea is to exchange the user output within each
other on a network before sending the (exchanged) data to
the server

• The server receive messages from the users without
knowing the origin of the messages, thus achieving
anonymization.

• Our proposal is motivated by messaging apps (LINE,
Facebook Messenger) where users exchange messages on
a social network

Modeling network shuffling as a random walk on graphs

1

t = 1

• Assume a fixed communication network/graph, and that all users exchange messages randomly and uniformly with
neighbors.

• This corresponds to the well-studied topic of random walk on graphs.

Modeling network shuffling as a random walk on graphs

1

1/2 1/2

t = 1 t = 2

• Assume a fixed communication network/graph, and that all users exchange messages randomly and uniformly with
neighbors.

• This corresponds to the well-studied topic of random walk on graphs.

Modeling network shuffling as a random walk on graphs

1

1/2 1/2

1/3

1/6 1/61/3

t = 1 t = 2 t = 3

• Assume a fixed communication network/graph, and that all users exchange messages randomly and uniformly with
neighbors.

• This corresponds to the well-studied topic of random walk on graphs.

The adversary view

p2 p3

t = T

• The privacy parameters are calculated based on the adversary
(server) knowledge of the probability of a certain node receiving the
message of a target user given (number of communication
rounds).

• This is different from uniform shuffling, where the shuffling is uniform.

• Each user can also receive more than one message at one time.

t = T

p1

p4 p5
p6

Privacy amplification theorem

NW
shuff.

ϵ0

ϵ
P1

P2

P3

• Assume that users send all messages to the server (“all” protocol)

• The proof is based on the reduction of shuffling to swapping [EFM+19]

• Privacy
amplification
depends on
network
structure.

• How do we
calculate this
quantity?

Stationary distribution of random walk on graphs

Fact 1: A random walk on graph G converges to a stationary distribution (ergodicity) if and only if G is non-bipartite and
connected

Fact 2: The mixing time (no. of rounds required to achieve a certain degree of homogeneity) is

At any time step, we are able to show that , where is the spectral gap (roughly

speaking, 1 minus the second eigenvalue of the transition matrix) to provide an upper bound (worst case) on the privacy
parameter.

∼ O(log n)

∑
i∈[n]

PG
i

2 ≤ ∑
i∈[n]

πG
i

2 + (1 − α)2t α

• To calculate the probabilities, it is convenient to use the notion stationary distribution.

• Stationary distribution: a distribution of a random walk such that for all initial distributions , it converges to π p0 lim
t→∞

= π

Privacy amplification theorem
• Assume that users send all messages to the server (“all” protocol)

• The proof is based on the reduction of shuffling to swapping

ϵ0

ϵ

, ∑
i∈[n]

PG
i

2 ≤ ∑
i∈[n]

πG
i

2 + (1 − α)2t

NW
shuff.

How the privacy guarantees change with time
• Intuitively, the probability distribution “spreads out” with respect to time, making it harder for the adversary

to guess the origin of data

Mixing time, α−1 log n

How the privacy guarantees change with time
• Intuitively, the probability distribution “spreads out” with respect to time, making it harder for the adversary

to guess the origin of data

Mixing time, α−1 log n Tracing a regular graph

Amplification (ϵ0 vs ϵ)

• Larger population leads to more
significant amplification (Google: 856k
vs Twitch: 9k)

• Amplification does not occur at large ϵ0

Amplification (ϵ0 vs ϵ)

• Larger population leads to more
significant amplification (Google: 856k
vs Twitch: 9k)

• Amplification does not occur at large ϵ0

• Similar rate of amplification (weaker exponential
dependence)

• Could be improved with more advanced
techniques

Other topics not discussed here
• “Single” protocol where user sends only one message: stronger privacy guarantees

• Tighter privacy bound for k-regular graph

• Private mean estimation as an application

• Threat modeling

• Please check our paper or arXiv:2204.03919

APPENDICES

Protocol
1. For each user/client, add noise to the output using local randomizer.

2. Use a public key (PK) provided by Server to encrypt the noisy output
(to prevent eavesdropping by parties other than Server, e.g., other
clients).

3. Communicate with other users via end-to-end encryption (to prevent
eavesdropping by parties other than the receiver, e.g., Server)

4. Send to a random user the noisy output via E2E.

5. Send noisy output to server after a pre-determined number of
communication rounds

User 1

User 2

Server

PK E2E

E2E

User n

Server receives and decodes user 1’s info

User 3 E2E

(1) (2) (3)

(4)

(4)

(4)

(5)

Trusted shuffler implementations

Centralized
mix-nets

Server

- communication complexity due to cover traffic
- still need to trust extra centralized entities

n2

