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How to anonymize data to enhance differential privacy?

• User wants to send (randomized) data to the server anonymously (Shuffle model)


• Anonymization is typically assumed to be performed with a centralized shuffler

Shuffler Server User 

It is shown that 
anonymization leads 

to privacy 
amplification in terms 
of differential privacy



Trusted shuffler implementation

Prochlo 
(TEE) 

Server 

- Vulnerable to side-channel attacks 
- single-point failure

[BEM+17] 



Network shuffling (our proposal)

Server 

- No centralized entity required

We give analytical results showing that privacy 
amplification is achievable under this decentralized 

setting



Distributed Analytics
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Differential Privacy
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• “An algorithm is differential private 
if changing a single record does 
not alter its output distribution by 
much.” [DN03, DMNS06]


(ϵ, δ)

Pr[M(D) = x] ≤ eϵPr[M(D′ ) = x] + δ



Differential Privacy (central)
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• “An algorithm is differential private 
if changing a single record does 
not alter its output distribution by 
much.” [DN03, DMNS06]


(ϵ, δ)

Pr[M(D) = x] ≤ eϵPr[M(D′ ) = x] + δ

• Pro: Utility is high (comparably small amount 
of noise is required to maintain 
indistinguishability)


• Con: One must trust the server (for not 
leaking privacy)



Differential Privacy (local)

Server/
Analyzer User 

x1

x2

xn

f(x1, …, xn)

…

Estimate 

-Differential Privacy


• “An algorithm is differential private 
if changing a single record does 
not alter its output distribution by 
much.” [DN03, DMNS06]


(ϵ, δ)

Pr[M(D) = x] ≤ eϵPr[M(D′ ) = x] + δ

• Pro: No trust assumption on aggregator 
is assumed


• Con: Low utility (Noise required to 
maintain indistinguishability is relatively 
high)



Differential Privacy (shuffle)
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• “An algorithm is differential private 
if changing a single record does 
not alter its output distribution by 
much.” [DN03, DMNS06]
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Differential Privacy (shuffle)
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• “An algorithm is differential private 
if changing a single record does 
not alter its output distribution by 
much.” [DN03, DMNS06]


(ϵ, δ)

Pr[M(D) = x] ≤ eϵPr[M(D′ ) = x] + δ

Shuffler 

Encode, Shuffle, 
Analyze


Anonymization


Shuffle/shuffled model

[CSU+19] 
[EFM+19] 

[BEM+17] 



Differential Privacy (shuffle)
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• “An algorithm is differential private 
if changing a single record does 
not alter its output distribution by 
much.” [DN03, DMNS06]


(ϵ, δ)

Pr[M(D) = x] ≤ eϵPr[M(D′ ) = x] + δ

Shuffler 

• The shuffler removes any identifier 
(identifying the user sending the data). 
Also known as uniform shuffling.


• Privacy amplification is said to occur 
when  (  being the overall, 
central DP,  being the individual 
LDP)
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Differential Privacy (shuffle)
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• “An algorithm is differential private 
if changing a single record does 
not alter its output distribution by 
much.” [DN03, DMNS06]


(ϵ, δ)

Pr[M(D) = x] ≤ eϵPr[M(D′ ) = x] + δ

Shuffler 

ϵ0

ϵ0

ϵ0

• Pro: Better utility than the local DP


• Con: One must trust the shuffler instead (e.g., 
using trusted hardware)

ϵ < ϵ0



Proposal (network shuffling)

• We would like to achieve the same shuffling effect without 
using a centralized shuffler.


• The main idea is to exchange the user output within each 
other on a network before sending the (exchanged) data to 
the server


• The server receive messages from the users without 
knowing the origin of the messages, thus achieving 
anonymization.


• Our proposal is motivated by messaging apps (LINE, 
Facebook Messenger) where users exchange messages on 
a social network 



Modeling network shuffling as a random walk on graphs

1

t = 1

• Assume a fixed communication network/graph, and that all users exchange messages randomly and uniformly with 
neighbors.


• This corresponds to the well-studied topic of random walk on graphs.



Modeling network shuffling as a random walk on graphs
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t = 1 t = 2

• Assume a fixed communication network/graph, and that all users exchange messages randomly and uniformly with 
neighbors.


• This corresponds to the well-studied topic of random walk on graphs.



Modeling network shuffling as a random walk on graphs
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t = 1 t = 2 t = 3

• Assume a fixed communication network/graph, and that all users exchange messages randomly and uniformly with 
neighbors.


• This corresponds to the well-studied topic of random walk on graphs.



The adversary view

p2 p3

t = T

• The privacy parameters are calculated based on the adversary 
(server) knowledge of the probability of a certain node receiving the 
message of a target user given  (number of communication 
rounds).


• This is different from uniform shuffling, where the shuffling is uniform.


• Each user can also receive more than one message at one time.

t = T

p1

p4 p5
p6



Privacy amplification theorem

NW 
shuff. 

ϵ0

ϵ
P1

P2
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• Assume that users send all messages to the server (“all” protocol)


• The proof is based on the reduction of shuffling to swapping [EFM+19]

• Privacy 
amplification 
depends on 
network 
structure.


• How do we 
calculate this 
quantity?



Stationary distribution of random walk on graphs

Fact 1: A random walk on graph G converges to a stationary distribution (ergodicity) if and only if G is non-bipartite and 
connected


Fact 2: The mixing time (no. of rounds required to achieve a certain degree of homogeneity) is 


At any time step, we are able to show that , where  is the spectral gap (roughly 

speaking, 1 minus the second eigenvalue of the transition matrix) to provide an upper bound (worst case) on the privacy 
parameter.

∼ O(log n)
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• To calculate the probabilities, it is convenient to use the notion stationary distribution.


• Stationary distribution: a distribution  of a random walk such that for all initial distributions , it converges to π p0 lim
t→∞

= π



Privacy amplification theorem
• Assume that users send all messages to the server (“all” protocol)


• The proof is based on the reduction of shuffling to swapping
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How the privacy guarantees change with time
• Intuitively, the probability distribution “spreads out” with respect to time, making it harder for the adversary 

to guess the origin of data

Mixing time, α−1 log n



How the privacy guarantees change with time
• Intuitively, the probability distribution “spreads out” with respect to time, making it harder for the adversary 

to guess the origin of data

Mixing time, α−1 log n Tracing a regular graph



Amplification (ϵ0 vs ϵ)

• Larger population leads to more 
significant amplification (Google: 856k 
vs Twitch: 9k)


• Amplification does not occur at large ϵ0



Amplification (ϵ0 vs ϵ)

• Larger population leads to more 
significant amplification (Google: 856k 
vs Twitch: 9k)


• Amplification does not occur at large ϵ0

• Similar rate of amplification (weaker exponential 
dependence)


• Could be improved with more advanced 
techniques



Other topics not discussed here
• “Single” protocol where user sends only one message: stronger privacy guarantees


• Tighter privacy bound for k-regular graph


• Private mean estimation as an application


• Threat modeling


• Please check our paper or arXiv:2204.03919



APPENDICES



Protocol 
1. For each user/client, add noise to the output using local randomizer.


2. Use a public key (PK) provided by Server to encrypt the noisy output 
(to prevent eavesdropping by parties other than Server, e.g., other 
clients).


3. Communicate with other users via end-to-end encryption (to prevent 
eavesdropping by parties other than the receiver, e.g., Server)


4. Send to a random user the noisy output via E2E.


5. Send noisy output to server after a pre-determined number of 
communication rounds

User 1

User 2

Server

PK E2E

E2E

User n

Server receives and decodes user 1’s info

User 3 E2E

(1) (2) (3)

(4)

(4)

(4)

(5)



Trusted shuffler implementations

Centralized 
mix-nets 

Server 

-  communication complexity due to cover traffic 
- still need to trust extra centralized entities

n2


